×

The McCoy condition on skew polynomial rings. (English) Zbl 1187.16027

Let \(R\) be a ring with 1, \(\sigma\) an endomorphism of \(R\), \(R[x]\) the polynomial ring, and \(R[x;\sigma]\) the skew polynomial ring. Then \(R\) is called a \(\sigma\)-skew McCoy ring if for any nonzero \(p(x)=\sum_{i=0}^ma_ix^i\), \(q(x)=\sum_{j=0}^na_jx^j\in R[x;\sigma]\), \(p(x)q(x)=0\) implies \(p(x)c=0\) for some nonzero \(c\in R\). When \(\sigma\) is the identity endomorphism, a \(\sigma\)-skew McCoy ring is a right McCoy ring.
The authors show some properties of a \(\sigma\)-skew McCoy ring. Theorem 1. (1) If \(R[x;\sigma]\) is right McCoy, then \(R\) is \(\sigma\)-skew McCoy, and (2) if \(R\) is \(\sigma\)-skew Armendariz, then \(R\) is \(\sigma\)-skew McCoy, where a ring is called \(\sigma\)-skew Armendariz if for \(p(x)=\sum_{i=0}^ma_ix^i\), \(q(x)=\sum_{j=0}^na_jx^j\in R[x;\sigma]\), \(p(x)q(x)=0\) implies \(a_i\sigma^i(b_j)=0\) for all \(i,j\).
A ring is called reversible if \(ab=0\) implies \(ba=0\) for \(a,b\in R\), and right (left) \(\sigma\)-reversible if \(ab=0\) implies \(b\sigma(a)=0\) (resp., \(\sigma(b)a=0\)) for \(a,b\in R\).
Theorem 2. Let \(\sigma\) be a monomorphism of a reversible ring \(R\) such that \(R\) is right \(\sigma\)-reversible. Then (1) \(R\) is \(\sigma\)-skew McCoy, and (2) for any nonzero \(p(x),q(x)\in R[x;\sigma]\) with \(p(x)q(x)=0\), there exists \(0\neq c\in R\) such that \(cq(x)=0\).
Moreover, it is shown that a \(\sigma\)-skew McCoy ring \(R\) is characterized in terms of some special kinds of upper triangular matrix rings over \(R\) and the polynomial ring \(R[x]\) with the endomorphism \(\overline\sigma\) extended from \(\sigma\), respectively.

MSC:

16S36 Ordinary and skew polynomial rings and semigroup rings
16U80 Generalizations of commutativity (associative rings and algebras)
16W20 Automorphisms and endomorphisms
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Başer M., Algebra Colloq. 16 pp 37– (2009)
[2] DOI: 10.1016/S0022-4049(99)00020-1 · Zbl 0982.16021 · doi:10.1016/S0022-4049(99)00020-1
[3] DOI: 10.1081/AGB-120016752 · Zbl 1042.16014 · doi:10.1081/AGB-120016752
[4] Hong C. Y., Algebra Colloq. 13 pp 253– (2006)
[5] Krempa J., Algebra Colloq. 3 pp 289– (1996)
[6] DOI: 10.1081/AGB-120037221 · Zbl 1068.16037 · doi:10.1081/AGB-120037221
[7] DOI: 10.1017/S0004972700039526 · Zbl 1127.16027 · doi:10.1017/S0004972700039526
[8] McConnell J. C., Noncommutative Noetherian Rings (1987) · Zbl 0644.16008
[9] DOI: 10.2307/2303094 · Zbl 0060.07703 · doi:10.2307/2303094
[10] DOI: 10.1016/j.jalgebra.2005.10.008 · Zbl 1110.16036 · doi:10.1016/j.jalgebra.2005.10.008
[11] DOI: 10.3792/pjaa.73.14 · Zbl 0960.16038 · doi:10.3792/pjaa.73.14
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.