zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Seasonal effects on a Beddington-DeAngelis type predator-prey system with impulsive perturbations. (English) Zbl 1187.34058
The authors consider the following periodical impulsive differential equations which represent a predator-prey system $$\gathered x'(t)= rx(t)\Biggl(1- {x(t)\over k}\Biggr)- {ax(t) y(t)\over by(t)+ x(t)+c}+\lambda x(t)\sin(\omega t),\\ y'(t)= -dy(t)+ {eax(t) y(t)\over by(t)+ x(t)+c},\quad t\ne n\tau,\\ x(t^+)= (1- p_1) x(t),\ t= n\tau,\ y(t^+)= (1- p_2) y(t)+ q,\ (x(0^+), y(0^+))= (x_0, y_0),\endgathered\tag1$$ where $\tau$ is the period of impulsive immigration or stock of the predator, $0\le p_1$, $p_2< 1$ and $x(t)$, $y(t)$ represent the population densities of prey and predator, respectively. The authors perform a numerical analysis of (1) for the case without of impulses, i.e. $p_1= p_2= 0$. Sufficient conditions for the local asymptotic stability of (1) are derived. For the periodic solution $(0,y^*(t))$ sufficient conditions for its local asymptotic stability are found. A numerical analysis of seasonal effect and impulsive perturbations is performed.

34C60Qualitative investigation and simulation of models (ODE)
34A37Differential equations with impulses
92D25Population dynamics (general)
34C25Periodic solutions of ODE
Full Text: DOI EuDML
[1] J. R. Beddington, “Mutual interference between parasites or predator and its effect on searching efficiency,” Journal of Animal Ecology, vol. 44, pp. 331-340, 1975. · doi:10.2307/3866
[2] D. L. DeAngelis, R. A. Goldstein, and R. V. O/Neill, “A model for trophic interaction,” Ecology, vol. 56, pp. 881-892, 1975. · doi:10.2307/1936298
[3] G. T. Skalski and J. F. Gilliam, “Functional responses with predator interference: viable alternatives to the Holling type II mode,” Ecology, vol. 82, pp. 3083-3092, 2001.
[4] M. Fan and Y. Kuang, “Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response,” Journal of Mathematical Analysis and Applications, vol. 295, no. 1, pp. 15-39, 2004. · Zbl 1051.34033 · doi:10.1016/j.jmaa.2004.02.038
[5] T. W. Hwang, “Uniqueness of limit cycles of the predator-prey system with Beddington-DeAngelis functional response,” Journal of Mathematical Analysis and Applications, vol. 290, pp. 113-122, 2004. · Zbl 1086.34028 · doi:10.1016/j.jmaa.2003.09.073
[6] J. M. Cushing, “Periodic time-dependent predator-prey systems,” SIAM Journal on Applied Mathematics, vol. 32, no. 1, pp. 82-95, 1977. · Zbl 0348.34031 · doi:10.1137/0132006
[7] S. M. Moghadas and M. E. Alexander, “Dynamics of a generalized Gause-type predator-prey model with a seasonal functional response,” Chaos, Solitons & Fractals, vol. 23, pp. 55-65, 2005. · Zbl 1058.92049 · doi:10.1016/j.chaos.2004.04.030
[8] Yu. A. Kuznetsov, S. Muratori, and S. Rinaldi, “Bifurcations and chaos in a periodic predator-prey model,” International Journal of Bifurcation and Chaos, vol. 2, no. 1, pp. 117-128, 1992. · Zbl 1126.92316 · doi:10.1142/S0218127492000112
[9] Z. Li, W. Wang, and H. Wang, “The dynamics of a Beddington-type system with impulsive control strategy,” Chaos, Solitons & Fractals, vol. 29, pp. 1229-1239, 2006. · Zbl 1142.34305 · doi:10.1016/j.chaos.2005.08.195
[10] X. Liu and L. Chen, “Complex dynamics of Holling type II Lotka-Volterra predator-prey system with impulsive perturbations on the predator,” Chaos, Solitons & Fractals, vol. 16, pp. 311-320, 2003. · Zbl 1085.34529 · doi:10.1016/S0960-0779(02)00408-3
[11] B. Liu, Y. Zhang, and L. Chen, “Dynamic complexities in a Lotka-Volterra predator-prey model concerning impulsive control strategy,” International Journal of Bifurcation and Chaos, vol. 15, no. 2, pp. 517-531, 2005. · Zbl 1080.34026 · doi:10.1142/S0218127405012338
[12] S. Rinaldi, S. Muratori, and Y. Kuznetsov, “Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities,” Bulletin of Mathematical Biology, vol. 55, pp. 15-35, 1993. · Zbl 0756.92026 · doi:10.1007/BF02460293
[13] W. Wang, H. Wang, and Z. Li, “The dynamic complexity of a three-species Beddington-type food chain with impulsive control strategy,” Chaos, Solitons & Fractals, vol. 32, pp. 1772-1785, 2007. · Zbl 1195.92066 · doi:10.1016/j.chaos.2005.12.025
[14] S. Zhang, D. Tan, and L. Chen, “Chaos in periodically forced Holling type II predator-prey system with impulsive perturbations,” Chaos, Solitons & Fractals, vol. 28, no. 2, pp. 367-376, 2006. · Zbl 1083.37537 · doi:10.1016/j.chaos.2005.05.037
[15] S. Zhang and L. Chen, “A study of predator-prey models with the Beddington-DeAnglis functional response and impulsive effect,” Chaos, Solitons & Fractals, vol. 27, pp. 237-248, 2006. · Zbl 1102.34032 · doi:10.1016/j.chaos.2005.03.039
[16] S. Gakkhar and R. K. Naji, “Chaos in seasonally perturbed ratio-dependent prey-predator system,” Chaos, Solitons & Fractals, vol. 15, pp. 107-118, 2003. · Zbl 1033.92026 · doi:10.1016/S0960-0779(02)00114-5
[17] G. C. W. Sabin and D. Summers, “Chaos in a periodically forced predator-prey ecosystem model,” Mathematical Biosciences, vol. 113, pp. 91-113, 1993. · Zbl 0767.92028 · doi:10.1016/0025-5564(93)90010-8
[18] H. Baek, “Dynamic complexities of a three-species beddington-DeAngelis system with impulsive control strategy,” Acta Applicandae Mathematicae. · Zbl 1194.34087 · doi:10.1007/s10440-008-9378-0
[19] H. Baek and Y. Do, “Stability for a holling type IV food chain system with impulsive perturbations,” Kyungpook Mathematical Journal, vol. 48, no. 3, pp. 515-527, 2008. · Zbl 1165.34307 · doi:10.5666/KMJ.2008.48.3.515
[20] H. Wang and W. Wang, “The dynamical complexity of a Ivlev-type prey-predator system with impulsive effect,” Chaos, Solitons & Fractals, vol. 38, pp. 1168-1176, 2007. · Zbl 1152.34310 · doi:10.1016/j.chaos.2007.02.008
[21] S. Zhang, L. Dong, and L. Chen, “The study of predator-prey system with defensive ability of prey and impulsive perturbations on the predator,” Chaos, Solitons & Fractals, vol. 23, pp. 631-643, 2005. · Zbl 1081.34041 · doi:10.1016/j.chaos.2004.05.044
[22] V. Lakshmikantham, D. D. Baĭnov, and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.