zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaos control of a fractional order modified coupled dynamos system. (English) Zbl 1187.34080
This paper analyzes some Routh-Hurwitz stability conditions generalized to the fractional order case, and discusses the stability region of the fractional order system. The authors analyze the chaotic behavior of the fractional order modified coupled dynamos system concretely, and provide conditions suppressing chaos to unstable equilibrium points. They use the feedback control method to control chaos in the fractional order modified coupled dynamos system. Numerical simulations show the effectiveness of the method. The stability results in this paper have been generalized to 4-dimensional systems in the following reference: [{\it A. E. Matouk}, Phys. Lett., A 373, 2166--2173 (2009)].

MSC:
34H10Chaos control (ODE)
34A08Fractional differential equations
34D20Stability of ODE
WorldCat.org
Full Text: DOI
References:
[1] Podlubny, I.: Fractional differential equations. (1999) · Zbl 0924.34008
[2] Hilfer, R.: Applications of fractional calculus in physics. (2001) · Zbl 0998.26002
[3] Bagley, R. L.; Calico, R. A.: Fractional order state equations for the control of viscoelastically damped structures. Journal of guidance, control and dynamics 14, No. 2, 304-311 (1991)
[4] Koeller, R. C.: Application of fractional calculus to the theory of viscoelasticity. Journal of applied mechanics 51, No. 2, 294-298 (1984) · Zbl 0544.73052
[5] Koeller, R. C.: Polynomial operators, Stieltjes convolution, and fractional calculus in hereditary mechanics. Acta mechanica 58, No. 3--4, 251-264 (1986) · Zbl 0578.73040
[6] Heaviside, O.: Electromagnetic theory. (1971) · Zbl 30.0801.03
[7] Ahmad, W. M.; El-Khazali, R.; Al-Assaf, Y.: Stabilization of generalized fractional order chaotic systems using state feedback control. Chaos, solitons & fractals 22, No. 1, 141-150 (2004) · Zbl 1060.93515
[8] Ahmed, E.; El-Sayed, A. M. A.; El-Saka, H. A. A.: On some Routh--Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems. Physics letters A 358, No. 1, 1-4 (2006) · Zbl 1142.30303
[9] Matignon, D.: Stability results for fractional differential equations with application to control processing. Computational engineering in system application 2, 963-968 (1996)
[10] Singer, J.; Wang, Y. Z.; Bau, H. H.: Controlling a chaotic system. Physical review letters 66, 1123-1125 (1991)
[11] Chen, G.; Dong, X.: Controlling Chua’s circuit. Circuits, systems and computers 3, 139-149 (1993)
[12] Chen, G.; Dong, X.: On feedback control of chaotic dynamic systems. International journal of bifurcation and chaos 2, No. 2, 407-411 (1992) · Zbl 0875.93176
[13] Chen, G.: On some controllability conditions for chaotic dynamics control. Chaos, solitons & fractals 8, No. 9, 1461-1470 (1997)
[14] Pyragas, K.: Control of chaos via extended delay feedback. Physica A 206, 323-330 (1995) · Zbl 0963.93523
[15] Vassiliadis, D.: Parametric adaptive control and parameter identification of low-dimensional chaotic systems. Physica D 71, 319-341 (1994) · Zbl 0825.93365
[16] Li, Y. X.; Tang, W. K. S.; Chen, G. R.: Generating hyperchaos via state feedback control. International journal of bifurcation and chaos 15, No. 10, 3367-3375 (2005)
[17] Wang, X. Y.; Liu, M.: Sliding mode control the synchronization of master-slave chaotic systems with sector nonlinear inputs. Acta physica sinica 54, No. 6, 2584-2589 (2005)
[18] Chen, A. M.; Lu, J. A.; Lü, J. H.; Yu, S. M.: Generating hyperchaotic Lü attractor via state feedback control. Physica A 364, 103-110 (2006)
[19] Tian, Y.; Gao, F.: Adaptive control of chaotic continuous-time systems with delay. Physica D 117, 1-12 (1998) · Zbl 0941.93534
[20] Pavlica, V.; Petrovacki, D.: About simple fuzzy control and fuzzy control based on fuzzy relational equations. Fuzzy sets & systems 101, No. 1, 41-47 (1999)
[21] Wang, X.; Chen, G.; Yu, X.: Anticontrol of chaos in continuous-time systems via time-delay feedback. Chaos 10, No. 4, 771-779 (2000) · Zbl 0967.93045
[22] Liu, F.; Ren, Y.; Shan, X. M.: A linear feedback synchronization theorem for a class of chaotic system. Chaos, solitons & fractals 13, No. 4, 723-730 (2002) · Zbl 1032.34045
[23] Ömer, M.; Ercan, S.: Observer based synchronization of chaotic systems. Physical review E 54, No. 5, 4803-4811 (1996)
[24] Wang, Y. W.; Guan, Z. H.; Wang, H. O.: LMI-based fuzzy stability and synchronization of Chen’s system. Physics letters A 320, No. 2--3, 154-159 (2003) · Zbl 1065.37503
[25] Ahmed, E.; El-Sayed, A. M. A.; Elsaka, H. A. A.: Equilibrium points, stability and numerical solutions of fractional-order predator--prey and rabies models. Journal of mathematical analysis and applications 325, No. 1, 542-553 (2007) · Zbl 1105.65122
[26] Caputo, M.: Linear models of dissipation whose Q is almost frequency independent. The geophysical journal of the royal astronomical society 13, 529-539 (1967)
[27] Agiza, H. N.: Controlling chaos for the dynamical system of coupled dynamos. Chaos, solitons & fractals 13, No. 2, 341-352 (2002) · Zbl 0994.37047
[28] Agiza, H. N.: Chaos synchronization of two coupled dynamos systems with unknown system parameters. International journal of modern physics C 15, No. 6, 873-883 (2004) · Zbl 1082.34041
[29] Wang, X. Y.; Wu, X. J.: Chaos control of a modified coupled dynamos system. Acta physica sinica 55, No. 10, 5083-5093 (2006) · Zbl 1202.93141
[30] Vaněček, A.; Čelikovský, S.: Control systems from linear analysis to synthesis of chaos. (1996) · Zbl 0874.93006
[31] Wang, X. Y.: Chaos in the complex nonlinearity system. (2003)
[32] Benettin, G.; Galgani, L.; Strelcyn, J. M.: Kolmogorov entropy and numerical experiments. Physical review A 14, 2338-2345 (1976)