zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stabilization of stochastic Hopfield neural network with distributed parameters. (English) Zbl 1187.35128
Summary: In this paper, the stability of stochastic Hopfield neural network with distributed parameters is studied. To discuss the stability of systems, the main idea is to integrate the solution to systems in the space variable. Then, the integration is considered as the solution process of corresponding neural networks described by stochastic ordinary differential equations. A Lyapunov function is constructed and Itô formula is employed to compute the derivative of the mean Lyapunov function along the systems, with respect to the space variable. It is difficult to treat stochastic systems with distributed parameters since there is no corresponding Itô formula for this kind of system. Our method can overcome this difficulty. Till now, the research of stability and stabilization of stochastic neural networks with distributed parameters has not been considered.

35K57Reaction-diffusion equations
35B35Stability of solutions of PDE
35R60PDEs with randomness, stochastic PDE
37N25Dynamical systems in biology
62M45Neural nets and related approaches (inference from stochastic processes)
82C32Neural nets (statistical mechanics)
Full Text: DOI