Aspenberg, Magnus; Yampolsky, Michael Mating non-renormalizable quadratic polynomials. (English) Zbl 1187.37065 Commun. Math. Phys. 287, No. 1, 1-40 (2009). Authors’ abstract: We prove the existence and uniqueness of matings of the basilica with any quadratic polynomial which lies outside of the 1/2-limb of \({\mathcal M}\), is non-renormalizable, and does not have any non-repelling periodic orbits. Reviewer: Viorel Vâjâitu (Bucureşti) Cited in 14 Documents MSC: 37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets 37E15 Combinatorial dynamics (types of periodic orbits) 37F45 Holomorphic families of dynamical systems; the Mandelbrot set; bifurcations (MSC2010) Keywords:topological mating; conformal mating; Julia set; quadratic polynomial; irrational number of bounded type PDF BibTeX XML Cite \textit{M. Aspenberg} and \textit{M. Yampolsky}, Commun. Math. Phys. 287, No. 1, 1--40 (2009; Zbl 1187.37065) Full Text: DOI arXiv References: [1] Ahlfors L., Bers L.: Riemann Mapping Theorem for variable metrics. Ann. Math. 72, 385–404 (1960) · Zbl 0104.29902 [2] Branner B., Hubbard J.H.: The iteration of cubic polynomials. ii. Patterns and parapatterns. Acta Math. 3-4, 229–325 (1992) · Zbl 0812.30008 [3] Bullett S., Sentenac P.: Ordered orbits of the shift, square roots, and the devil’s staircase. Math. Proc. Camb. Phil. Soc. 115, 451–481 (1994) · Zbl 0823.58012 [4] Carleson, L., Gamelin, T.: Complex Dynamics. Berlin-Heidelberg NewYork: Springer-Verlag, 1993 · Zbl 0782.30022 [5] Douady, A.: Algorithms for computing angles in the Mandelbrot set, In: Barnsley, Demko (ed.) ”Chaotic Dynamics and Fractals,” London-NewYork: Academic Press, 1986, pp. 155–168 [6] Douady A.: Systéms dynamiques holomorphes. Seminar Bourbaki. Astérisque. 105-106, 39–64 (1983) [7] Douady A.: Disques de Siegel at aneaux de Herman. Seminar Bourbaki. Astérisque. 152-153, 151–172 (1987) [8] Douady A., Earle C.: Conformally natural extension of homeomorphisms of the circle. Acta Math. 157, 23–48 (1986) · Zbl 0615.30005 [9] Douady, A., Hubbard, J.H.: Étude dynamique des polynômes complexes I & II. Preprint, Pub. Math. d’Orsay 84-02, 85-05, 1984/1985 [10] Douady A., Hubbard J.H.: A proof of Thurston’s topological characterization of rational functions. Acta Math. 171, 263–297 (1993) · Zbl 0806.30027 [11] Epstein, A.: Counterexamples to the quadratic mating conjecture. Manuscript [12] Hubbard, J.H.: Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz, In: ”Topological methods in modern mathematics” (Stony Brook, NY, 1991), Houston, TX: Publish or Perish, pp. 467–511, 1993 · Zbl 0797.58049 [13] Luo, J.: Combinatorics and holomorphic dynamics: Captures, matings, Newton’s method. Thesis, Cornell University, 1995 [14] Lyubich M.Yu.: The dynamics of rational transforms: The topological picture. Russian Math. Surveys 41, 43–117 (1986) · Zbl 0619.30033 [15] Lyubich M.Yu.: Dynamics of quadratic polynomials I-II. Acta Math. 178, 185–297 (1997) · Zbl 0908.58053 [16] Lyubich M.Yu.: Parapuzzles and SRB measures. Asterisque. 261, 173–200 (2000) · Zbl 1044.37038 [17] Mañé R., Sad P., Sullivan D.: On the dynamics of rational maps. Ann. Sci. École Norm. Sup. (4) 16(2), 193–217 (1983) · Zbl 0524.58025 [18] McMullen, C.: Complex Dynamics and Renormalization. Ann. Math Stud. Vol. 135, 1994 · Zbl 0807.30013 [19] Milnor, J.: Dynamics in One Complex Variable: Introductory Lectures, Wiesbaden: Vieweg, 1999 · Zbl 0946.30013 [20] Milnor J.: Geometry and dynamics of quadratic rational maps. Experim. Math. 2, 37–83 (1993) · Zbl 0922.58062 [21] Milnor, J.: Periodic orbits, external rays, and the Mandelbrot set: An expository account. Asterisque 261 (1999) [22] Milnor J.: Pasting together Julia sets - a worked out example of mating. Expe. Math. 13(1), 55–92 (2004) · Zbl 1115.37051 [23] Milnor, J.: Local connectivity of Julia sets: expository lectures. In: The Mandelbrot set, theme and variations, London Math. Soc. Lecture Note Ser., 274, Cambridge: Cambridge Univ. Press, pp. 67–116, 2000 · Zbl 1107.37305 [24] Moore R.L.: Concerning upper semi-continuous collection of continua. Trans. Amer. Math. Soc. 27, 416–428 (1925) · JFM 51.0464.03 [25] Rees, M.: Realization of matings of polynomials as rational maps of degree two. Manuscript, 1986 [26] Rees M.: A partial description of parameter space of rational maps of degree two: part I. Acta Math. 168, 11–87 (1992) · Zbl 0774.58035 [27] Roesch, P.: Holomorphic motions and parapuzzles, In: The Mandelbrot set, Theme and variations, London Math. Soc. Lecture Note Ser., 274, Cambridge: Cambridge Univ. Press, 2000 [28] Roesch, P.: Topologie locale des méthodes de Newton cubiques. Thesis, E.N.S, Lyon, 1997 [29] Shishikura, M.: On a theorem of M. Rees for matings of polynomials. In: The Mandelbrot set, Theme and variations, London Math. Soc. Lecture Note Ser., 274, Cambridge: Cambridge Univ. Press, 2000 · Zbl 1062.37039 [30] Shishikura M.: The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets. Ann. Math. 147, 25–267 (1998) · Zbl 0922.58047 [31] Shishikura M.: Bifurcation of parabolic fixed points. In: The Mandelbrot set, Theme and variations, London Math. Soc. 274, Cambridge: Cambridge Univ. Press, 2000 · Zbl 1062.37043 [32] Shishikura M., Tan L.: A family of cubic rational maps and matings of cubic polynomials. Exp. Math. 9(1), 29–53 (2000) · Zbl 0969.37020 [33] Slodkowski Z.: Natural extensions of holomorphic motions. J. Geom. Anal. 7(4), 637–651 (1997) · Zbl 0942.30027 [34] Tan L.: Matings of quadratic polynomials. Erg. Th. and Dyn. Sys. 12, 589–620 (1992) · Zbl 0756.58024 [35] Tan L., Yin Y.: Local connectivity of the Julia set for geometrically finite rational maps. Sci. China Ser. A 39(1), 39–47 (1996) · Zbl 0858.30021 [36] Yampolsky M.: Complex bounds for renormalization of critical circle maps. Erg. Th. Dyn. Sys. 18, 1–31 (1998) · Zbl 0915.58083 [37] Yampolsky M., Zakeri S.: Mating Siegel quadratic polynomials. J. Amer. Math. Soc. 14(1), 25–78 (2001) · Zbl 1050.37022 [38] Zakeri S.: Biaccessibility in quadratic Julia sets. Erg. Th. Dyn. Sys. 20(6), 1859–1883 (2000) · Zbl 0970.37037 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.