zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Maps on states preserving the relative entropy. II. (English) Zbl 1187.47030
Summary: Let $H$ be a finite-dimensional complex Hilbert space. The aim of this paper is to prove that every transformation on the space of all density operators on $H$ which preserves the relative entropy is implemented by either a unitary or an antiunitary operator on $H$. [For Part I, see J. Math. Phys. 49, No. 3, 032114 (2008; Zbl 1153.81407).]

47B49Transformers, preservers (operators on spaces of operators)
47N50Applications of operator theory in quantum physics
Full Text: DOI
[1] Bengtsson, I.; &zdot, K.; Yczkowski: Geometry of quantum states: an introduction to quantum entanglement, (2006)
[2] Faure, C. A.: An elementary proof of the fundamental theorem of projective geometry, Geom. dedicata. 90, 145-151 (2002) · Zbl 0996.51001 · doi:10.1023/A:1014933313332
[3] Molnár, L.: Selected preserver problems on algebraic structures of linear operators and on function spaces, Lecture notes in mathematics 1895 (2007) · Zbl 1119.47001
[4] Molnár, L.: Maps on states preserving the relative entropy, J. math. Phys. 49, 032114 (2008) · Zbl 1153.81407 · doi:10.1063/1.2898693