Area-minimizing vector fields on round 2-spheres. (English) Zbl 1187.53029

Summary: A vector field \(V\) on an \(n\)-dimensional round sphere \(S^{n}(r)\) defines a submanifold \(V(S^{n})\) of the tangent bundle \(TS^{n}\). The Gluck and Ziller question is to find the infimum of the \(n\)-dimensional volume of \(V(S^{n})\) among unit vector fields. This volume is computed with respect to the natural metric on the tangent bundle as defined by Sasaki. Surprisingly, the problem is only solved for dimension 3 [H. Gluck and W. Ziller, Comment. Math. Helv. 61, 177–192 (1986; Zbl 0605.53022)]. In this article we tackle the question for the 2-sphere. Since there is no globally defined vector field on \(S^{2}\), the infimum is taken on singular unit vector fields without boundary. These are vector fields defined on a dense open set and such that the closure of their image is a surface without boundary. In particular, if the vector field is area-minimizing it defines a minimal surface of \(T^{1}S^{2}(r)\). We prove that if this minimal surface is homeomorphic to \(\mathbb RP^{2}\) then it must be the Pontryagin cycle. It is the closure of unit vector fields with one singularity obtained by parallel translating a given vector along any great circle passing through a given point. We show that Pontryagin fields of the unit 2-sphere are area-minimizing.


53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)


Zbl 0605.53022
Full Text: DOI


[1] Berger M., Ann. Scient. Ec. Norm. 5 pp 1– (1972)
[2] DOI: 10.1007/s00208-005-0692-9 · Zbl 1115.53025 · doi:10.1007/s00208-005-0692-9
[3] DOI: 10.1007/s00014-004-0802-4 · Zbl 1057.53022 · doi:10.1007/s00014-004-0802-4
[4] DOI: 10.1090/S0002-9904-1970-12542-3 · Zbl 0194.35803 · doi:10.1090/S0002-9904-1970-12542-3
[5] Fleming W., Rend. Cir. Mat. Palermo 11 pp 1– (1962)
[6] DOI: 10.1070/IM1972v006n05ABEH001911 · Zbl 0282.49040 · doi:10.1070/IM1972v006n05ABEH001911
[7] DOI: 10.1017/S0308210500004121 · Zbl 1122.53037 · doi:10.1017/S0308210500004121
[8] DOI: 10.2748/tmj/1113247180 · Zbl 1006.53053 · doi:10.2748/tmj/1113247180
[9] Gluck H., Ens. Math. 34 pp 233– (1988)
[10] DOI: 10.1007/BF02621910 · Zbl 0605.53022 · doi:10.1007/BF02621910
[11] DOI: 10.1016/S0926-2245(02)00060-8 · Zbl 1035.53089 · doi:10.1016/S0926-2245(02)00060-8
[12] Hardt R., Grenoble 40 pp 701– (1990)
[13] DOI: 10.2307/1971233 · Zbl 0457.49029 · doi:10.2307/1971233
[14] DOI: 10.2307/2046818 · Zbl 0687.58031 · doi:10.2307/2046818
[15] DOI: 10.1007/s10455-006-9025-9 · Zbl 1130.49034 · doi:10.1007/s10455-006-9025-9
[16] DOI: 10.2748/tmj/1178241033 · Zbl 0309.53036 · doi:10.2748/tmj/1178241033
[17] DOI: 10.2307/2154338 · Zbl 0771.53023 · doi:10.2307/2154338
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.