On the fusion of non-independent belief structures. (English) Zbl 1187.68200

Summary: We briefly review some aspects of the Dempster-Shafer theory of evidence. We suggest an approach to the aggregation of non-independent belief structures. This approach makes use of a weighted aggregation of the belief structures where the weights are related to the degree of dependence. It is shown that this aggregation is non-commutative, the fused value depends on the sequencing of the evidences. We then consider the problem of how best to sequence the evidence. We investigate using the measure of information content of the fused value as a method for selecting the appropriate way to sequence the belief structures.


68P20 Information storage and retrieval of data
Full Text: DOI


[1] DOI: 10.1080/03081079908935240 · Zbl 0938.93033
[2] DOI: 10.1142/S021848850300234X · Zbl 1072.68099
[3] DOI: 10.1080/03081070500473490 · Zbl 1119.68196
[4] DOI: 10.1201/9781420011456 · Zbl 1118.62128
[5] DOI: 10.1214/aoms/1177698950 · Zbl 0168.17501
[6] Dempster A.P., Journal of the Royal Statistical Society pp 205– (1968)
[7] Klir G.J., Uncertainty and information (2006) · Zbl 1280.94004
[8] Shafer G., A mathematical theory of evidence (1976) · Zbl 0359.62002
[9] DOI: 10.1080/03081078308960825 · Zbl 0521.94008
[10] DOI: 10.1016/S0020-7373(86)80066-9 · Zbl 0653.68106
[11] DOI: 10.1002/int.4550010403 · Zbl 0643.94054
[12] DOI: 10.1016/0020-0255(87)90007-7 · Zbl 0629.68092
[13] Yager R.R., Computational intelligence: soft computing and fuzzy-neuro integration with applications pp 94– (1998)
[14] DOI: 10.1002/(SICI)1098-111X(199912)14:12<1239::AID-INT5>3.0.CO;2-G · Zbl 0937.68119
[15] DOI: 10.1109/21.398683
[16] Yager, R.R. and Liu, L. 2008. ”Classic works of the Dempster–Shafer theory of belief functions”. Edited by: Dempster, A.P. and Shafer, G. Heidelberg: Springer. · Zbl 1135.68051
[17] DOI: 10.1016/0165-0114(78)90029-5 · Zbl 0377.04002
[18] Zadeh L.A., Advances in fuzzy set theory and applications pp 3– (1979)
[19] DOI: 10.1016/j.ins.2005.01.017 · Zbl 1074.94021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.