Alexander, Kenneth S.; Zygouras, Nikos Equality of critical points for polymer depinning transitions with loop exponent one. (English) Zbl 1187.82054 Ann. Appl. Probab. 20, No. 1, 356-366 (2010). Summary: We consider a polymer with configuration modelled by the trajectory of a Markov chain, interacting with a potential of form \(u+V_n\) when it visits a particular state 0 at time \(n\), with \(\{V_n\}\) representing i.i.d. quenched disorder. There is a critical value of \(u\) above which the polymer is pinned by the potential. A particular case not covered in a number of previous studies is that of loop exponent one, in which the probability of an excursion of length \(n\) takes the form \(\varphi (n)/n\) for some slowly varying \(\varphi \); this includes simple random walk in two dimensions. We show that in this case, at all temperatures, the critical values of \(u\) in the quenched and annealed models are equal, in contrast to all other loop exponents, for which these critical values are known to differ, at least at low temperatures. Cited in 14 Documents MSC: 82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics 82D60 Statistical mechanics of polymers 60K35 Interacting random processes; statistical mechanics type models; percolation theory 82B27 Critical phenomena in equilibrium statistical mechanics Keywords:pinning; polymer; disorder; random potential; quenched critical point × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Alexander, K. S. (2008). The effect of disorder on polymer depinning transitions. Comm. Math. Phys. 279 117-146. · Zbl 1175.82034 · doi:10.1007/s00220-008-0425-5 [2] Alexander, K. S. and Sidoravicius, V. (2006). Pinning of polymers and interfaces by random potentials. Ann. Appl. Probab. 16 636-669. · Zbl 1145.82010 · doi:10.1214/105051606000000015 [3] Alexander, K. S. and Zygouras, N. (2009). Quenched and annealed critical points in polymer pinning models. Comm. Math. Phys. 291 659-689. · Zbl 1188.82154 · doi:10.1007/s00220-009-0882-5 [4] Derrida, B., Giacomin, G., Lacoin, H. and Toninelli, F. L. (2009). Fractional moment bounds and disorder relevance for pinning models. Comm. Math. Phys. 287 867-887. · Zbl 1226.82028 · doi:10.1007/s00220-009-0737-0 [5] Derrida, B., Giacomin, G., Lacoin, H. and Toninelli, F. L. (2009). Personal communication. [6] Derrida, B., Hakim, V. and Vannimenus, J. (1992). Effect of disorder on two-dimensional wetting. J. Stat. Phys. 66 1189-1213. · Zbl 0900.82051 · doi:10.1007/BF01054419 [7] Forgács, G., Luck, J. M., Nieuwenhuizen, T. M. and Orland, H. (1988). Exact critical behavior of two-dimensional wetting problems with quenched disorder. J. Stat. Phys. 51 29-56. · Zbl 1086.82574 · doi:10.1007/BF01015319 [8] Giacomin, G. (2007). Random Polymer Models . Imperial College Press, London. · Zbl 1125.82001 [9] Giacomin, G. (2009). Renewal sequences, disordered potentials, and pinning phenomena. In Spin Glasses : Statics and Dynamics , Summer School , Paris 2007, Progress in Probability . Birkhauser, Boston. · Zbl 1194.82042 [10] Giacomin, G., Lacoin, H. and Toninelli, F. L. (2009). Marginal relevance of disorder for pinning models. Comm. Pure Appl. Math. · Zbl 1189.60173 · doi:10.1002/cpa.20301 [11] Giacomin, G. and Toninelli, F. L. (2006). Smoothing effect of quenched disorder on polymer depinning transitions. Comm. Math. Phys. 266 1-16. · Zbl 1113.82032 · doi:10.1007/s00220-006-0008-2 [12] Giacomin, G. and Toninelli, F. L. (2006). The localized phase of disordered copolymers with adsorption. ALEA Lat. Am. J. Probab. Math. Stat. 1 149-180. · Zbl 1134.82006 [13] Giacomin, G. and Toninelli, F. L. (2007). On the irrelevant disorder regime of pinning models. Ann. Probab. 37 1841-1875. · Zbl 1181.60148 · doi:10.1214/09-AOP454 [14] Jain, N. C. and Pruitt, W. E. (1972). The range of random walk. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability ( Univ. California , Berkeley , Calif. , 1970 / 1971). Probability Theory 3 31-50. Univ. California Press, Berkeley, CA. · Zbl 0194.49205 [15] Toninelli, F. L. (2008). A replica-coupling approach to disordered pinning models. Comm. Math. Phys. 280 389-401. · Zbl 1207.82026 · doi:10.1007/s00220-008-0469-6 [16] Toninelli, F. (2009). Localization transition in disordered pinning models. Effect of randomness on the critical properties. In Methods of Contemporary Mathematical Statistical Physics. Lecture Notes in Mathematics 1970 129-176. Springer, Berlin. · Zbl 1180.82241 · doi:10.1007/978-3-540-92796-9_3 [17] Toninelli, F. L. (2008). Disordered pinning models and copolymers: Beyond annealed bounds. Ann. Appl. Probab. 18 1569-1587. · Zbl 1157.60090 · doi:10.1214/07-AAP496 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.