×

Dynamical large deviations for the boundary driven weakly asymmetric exclusion process. (English) Zbl 1187.82083

Summary: We consider the weakly asymmetric exclusion process on a bounded interval with particle reservoirs at the endpoints. The hydrodynamic limit for the empirical density, obtained in the diffusive scaling, is given by the viscous Burgers equation with Dirichlet boundary conditions. We prove the associated dynamical large deviations principle.

MSC:

82C22 Interacting particle systems in time-dependent statistical mechanics
60F10 Large deviations
82C35 Irreversible thermodynamics, including Onsager-Machlup theory
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Benois, O. (1996). Large deviations for the occupation times of independent particle systems. Ann. Appl. Probab. 6 269-296. · Zbl 0864.60076
[2] Benois, O., Kipnis, C. and Landim, C. (1995). Large deviations from the hydrodynamical limit of mean zero asymmetric zero range processes. Stochastic Process. Appl. 55 65-89. · Zbl 0822.60091
[3] Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G. and Landim, C. (2003). Large deviations for the boundary driven symmetric simple exclusion process. Math. Phys. Anal. Geom. 6 231-267. · Zbl 1031.82039
[4] Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G. and Landim, C. (2006). Large deviation approach to nonequilibrium processes in stochastic lattice gases. Bull. Braz. Math. Soc. ( N.S. ) 37 611-643. · Zbl 1109.60325
[5] Bertini, L., Gabrielli, D. and Landim, C. (2009). Strong asymmetric limit of the quasi-potential of the boundary driven weakly asymmetric exclusion process. Comm. Math. Phys. 289 311-334. · Zbl 1167.82349
[6] Comets, F. (1986). Grandes déviations pour des champs de Gibbs sur Z d . C. R. Acad. Sci. Paris Sér. I Math. 303 511-513. · Zbl 0606.60035
[7] De Masi, A., Presutti, E. and Scacciatelli, E. (1989). The weakly asymmetric simple exclusion process. Ann. Inst. H. Poincaré Probab. Statist. 25 1-38. · Zbl 0664.60110
[8] Derrida, B. (2007). Nonequilibrium steady states: Fluctuations and large deviations of the density and of the current. J. Stat. Mech. Theory Exp. 7 45.
[9] Derrida, B., Lebowitz, J. L. and Speer, E. R. (2002). Large deviation of the density profile in the steady state of the open symmetric simple exclusion process. J. Stat. Phys. 107 599-634. · Zbl 1067.82047
[10] Derrida, B., Lebowitz, J. L. and Speer, E. R. (2003). Exact large deviation functional of a stationary open driven diffusive system: The asymmetric exclusion process. J. Stat. Phys. 110 775-810. · Zbl 1031.60083
[11] Deuschel, J.-D. and Stroock, D. W. (1989). Large Deviations. Pure and Applied Mathematics 137 . Academic Press, Boston, MA. · Zbl 0705.60029
[12] Donsker, M. D. and Varadhan, S. R. S. (1989). Large deviations from a hydrodynamic scaling limit. Comm. Pure Appl. Math. 42 243-270. · Zbl 0780.60027
[13] Enaud, C. and Derrida, B. (2004). Large deviation functional of the weakly asymmetric exclusion process. J. Stat. Phys. 114 537-562. · Zbl 1061.82020
[14] Eyink, G., Lebowitz, J. L. and Spohn, H. (1990). Hydrodynamics of stationary nonequilibrium states for some stochastic lattice gas models. Comm. Math. Phys. 132 253-283. · Zbl 0706.76082
[15] Eyink, G., Lebowitz, J. L. and Spohn, H. (1991). Lattice gas models in contact with stochastic reservoirs: Local equilibrium and relaxation to the steady state. Comm. Math. Phys. 140 119-131. · Zbl 0734.60110
[16] Gärtner, J. (1988). Convergence towards Burgers’ equation and propagation of chaos for weakly asymmetric exclusion processes. Stochastic Process. Appl. 27 233-260. · Zbl 0643.60094
[17] Kipnis, C. and Landim, C. (1999). Scaling Limits of Interacting Particle Systems . Springer, Berlin. · Zbl 0927.60002
[18] Kipnis, C., Landim, C. and Olla, S. (1995). Macroscopic properties of a stationary nonequilibrium distribution for a nongradient interacting particle system. Ann. Inst. H. Poincaré Probab. Statist. 31 191-221. · Zbl 0819.60096
[19] Kipnis, C., Marchioro, C. and Presutti, E. (1982). Heat flow in an exactly solvable model. J. Stat. Phys. 27 65-74.
[20] Kipnis, C., Olla, S. and Varadhan, S. R. S. (1989). Hydrodynamics and large deviations for simple exclusion processes. Comm. Pure Appl. Math. 42 115-137. · Zbl 0644.76001
[21] Landim, C., Olla, S. and Volchan, S. B. (1998). Driven tracer particle in one-dimensional symmetric simple exclusion. Comm. Math. Phys. 192 287-307. · Zbl 0911.60085
[22] Lanford, O. E. (1973). Entropy and Equilibrium States is Classical Statistical Mechanics. Lecture Notes in Physics 20 . Springer, Berlin.
[23] Mourragui, M. and Orlandi, E. (2007). Large deviations from a macroscopic scaling limit for particle systems with Kac interaction and random potential. Ann. Inst. H. Poincaré , Probab. Statist. 43 677-715. · Zbl 1180.60080
[24] Olla, S. (1988). Large deviations for Gibbs random fields. Probab. Theory Related Fields 77 343-357. · Zbl 0621.60031
[25] Protter, M. H. and Weinberger, H. F. (1984). Maximum Principles in Differential Equations . Springer, New York. · Zbl 0563.35013
[26] Quastel, J. (1995). Large deviations from a hydrodynamic scaling limit for a nongradient system. Ann. Probab. 23 724-742. · Zbl 0843.60087
[27] Quastel, J., Rezakhanlou, F. and Varadhan, S. R. S. (1999). Large deviations for the symmetric simple exclusion process in dimensions d \geq 3. Probab. Theory Related Fields 113 1-84. · Zbl 0928.60087
[28] Simon, J. (1987). Compact sets in the space L p (0, T ; B ). Ann. Mat. Pura Appl. (4) 146 65-96. · Zbl 0629.46031
[29] Spohn, H. and Yau, H.-T. (1995). Bulk diffusivity of lattice gases close to criticality. J. Stat. Phys. 79 231-241. · Zbl 1106.82335
[30] Varadhan, S. R. S. (1984). Large Deviations and Applications . SIAM, Philadelphia. · Zbl 0549.60023
[31] Varadhan, S. R. S. and Yau, H.-T. (1997). Diffusive limit of lattice gas with mixing conditions. Asian J. Math. 1 623-678. · Zbl 0947.60089
[32] Zeidler, E. (1990). Nonlinear Functional Analysis and Its Applications. II/A . Springer, Berlin. · Zbl 0684.47028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.