New algorithm for the numerical solution of the integro-differential equation with an integral boundary condition. (English) Zbl 1187.92094

Summary: In this paper, a sequence of approximate solutions converging uniformly to the exact solution for a class of integro-differential equations with an integral boundary condition arising in chemical engineering, underground water flow and population dynamics and other fields of physics and mathematical chemistry are obtained by using an iterative method. An exact solution is represented in the form of series in the reproducing kernel space. The \(n\)-term approximation \(u_{n}(x)\) is proved to converge to the exact solution \(u(x)\). Moreover, the first derivative of \(u_{n}(x)\) is also convergent to the first derivative of \(u(x)\).


92E99 Chemistry
65R99 Numerical methods for integral equations, integral transforms
92F05 Other natural sciences (mathematical treatment)


Full Text: DOI


[1] Gallardo J.M.: Second order differential operators with integral boundary conditions and generation of semigroups. Rocky Mt. J. Math. 30, 1265–1292 (2000) · Zbl 0984.34014 · doi:10.1216/rmjm/1021477351
[2] Karakostas G.L., Tsamatos P.Ch.: Multiple positive solutions of some Fredholm integral equations arisen from nonlocal boundary-value problems. Electron. J. Differ. Equ. 30, 1–17 (2002) · Zbl 0998.45004
[3] Lomtatidze A., Malaguti L.: On a nonlocal boundary-value problems for second order nonlinear singular differential equations. Georgian Math. J. 7, 133–154 (2000) · Zbl 0967.34011
[4] Bouziani A., Merazga N.: Solution to a semilinear pseudoparabolic problem with integral conditions. Electron. J. Differ. Equ. 115, 1–18 (2006) · Zbl 1112.35115
[5] Merazga N., Bouziani A.: On a time-discretization method for a semilinear heat equation with purely integral conditions in a nonclassical function space. Nonlinear Anal. 66, 604–623 (2007) · Zbl 1105.35044 · doi:10.1016/j.na.2005.12.005
[6] Pulkina L.S.: A non-local problem with integral conditions for hyperbolic equations. Electron. J. Differ. Equ. 45, 1–6 (1999) · Zbl 0935.35027
[7] Jankowski T.: Monotone and numerical-analytic methods for differential equations. Comput. Math. Appl. 45, 1823–1828 (2003) · Zbl 1054.45003 · doi:10.1016/S0898-1221(03)90003-4
[8] Cui M.G., Chen Z.: The exact solution of nonlinear age-structured population model. Nonlinear Anal. Real World Appl. 8, 1096–1112 (2007) · Zbl 1124.35030 · doi:10.1016/j.nonrwa.2006.06.004
[9] Capobianco E.: Kernel methods and flexible inference for complex stochastic dynamics. Physica A: Stat. Mech. Appl. 387, 4077–4098 (2008) · doi:10.1016/j.physa.2008.03.003
[10] Ball J.A., Bolotnikov V., Fang Q.: Schur-class multipliers on the Arveson space: De Branges-Rovnyak reproducing kernel spaces and commutative transfer-function realizations. J. Math. Anal. Appl. 341, 519–539 (2008) · Zbl 1223.47012 · doi:10.1016/j.jmaa.2007.10.033
[11] Chen Z., Lin Y.Z.: The exact solution of a linear integral equation with weakly singular kernel. J. Math. Anal. Appl. 344, 726–734 (2008) · Zbl 1144.45002 · doi:10.1016/j.jmaa.2008.03.023
[12] G.E. Fasshauer, Meshfree approximation methods with MATLAB. With 1 CD-ROM (Windows, Macintosh and UNIX). (World Scientific Publishing Co. Pte. Ltd, Hackensack, NJ, 2007) · Zbl 1123.65001
[13] Cui M.G., Lin Y.Z.: Nonlinear numercial analysis in the reproducing kernel space. Nova Science Publisher, New York (2008)
[14] Cui M.G., Geng F.Z.: Solving singular two-point boundary value problem in reproducing kernel space. J. Comput. Appl. Math. 205, 6–15 (2007) · Zbl 1149.65057 · doi:10.1016/j.cam.2006.04.037
[15] Yildirim A.: Solution of BVPs for fourth-order integro-differential equations by using homotopy perturbation method. Comput. Math. Appl. 56, 3175–3180 (2008) · Zbl 1165.65377 · doi:10.1016/j.camwa.2008.07.020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.