×

Extreme ranks of real matrices in solution of the quaternion matrix equation \(AXB = C\) with applications. (English) Zbl 1188.15016

Summary: For a consistent quaternion matrix equation \(AXB = C\), the formulas are established for maximal and minimal ranks of real matrices \(X_{1}, X_{2}, X_{3}, X_{4}\) in solution \(X = X_{1} + X_{2}i + X_{3}j + X_{4}k\). A necessary and sufficient condition is given for the existence of a real solution of the quaternion matrix equation. The expression is also presented for the general solution to this equation when the solvability conditions are satisfied. Moreover, necessary and sufficient conditions are given for this matrix equation to have a complex solution or a pure imaginary solution. As applications, the maximal and minimal ranks of real matrices \(E, F, G, H\) in a generalized inverse \((A +Bi + Cj + Dk)^{-} = E + Fi + Gj + Hk\) of a quaternion matrix \(A + Bi + Cj + Dk\) are also considered. In addition, a necessary and sufficient condition is derived for the quaternion matrix equations \(A_{1}XB_{1} = C_{1}\) and \(A_{2}XB_{2} = C_{2}\) to have a common real solution.

MSC:

15A24 Matrix equations and identities
15B33 Matrices over special rings (quaternions, finite fields, etc.)
15A03 Vector spaces, linear dependence, rank, lineability
15A09 Theory of matrix inversion and generalized inverses
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Adler S. L., Quaternionic Quantum Mechanics and Quantum Fields (1995) · Zbl 0885.00019
[2] DOI: 10.1016/0024-3795(89)90067-0 · Zbl 0688.15003
[3] DOI: 10.1016/j.camwa.2005.11.032 · Zbl 1136.15011
[4] Dai H., Linear Algebra Appl. 131 pp 1–
[5] DOI: 10.1007/978-1-4612-6101-8
[6] DOI: 10.1016/j.sigpro.2004.04.001 · Zbl 1154.94331
[7] DOI: 10.1017/S030500410004799X
[8] Mitra S. K., Linear Algebra and Appl. 131 pp 97–
[9] DOI: 10.1016/S0898-1221(00)00330-8 · Zbl 0983.15016
[10] DOI: 10.1016/0024-3795(91)90063-3 · Zbl 0718.15006
[11] Peng Z. Y., Appl. Math. Comput. 170 pp 711–
[12] Peng Y. X., Appl. Math. Comput. 160 pp 763–
[13] Peng Y. X., Appl. Math. Comput. 183 pp 1127–
[14] Peng Z. H., Appl. Math. Comput. 181 pp 988–
[15] Sangwine S. J., Appl. Math. Comput. 182 pp 727–
[16] DOI: 10.1016/S0024-3795(02)00345-2 · Zbl 1016.15003
[17] DOI: 10.1080/0308108031000114631 · Zbl 1040.15003
[18] DOI: 10.1016/j.laa.2003.12.039 · Zbl 1058.15015
[19] DOI: 10.1016/j.camwa.2004.12.002 · Zbl 1138.15004
[20] DOI: 10.1016/j.camwa.2005.01.014 · Zbl 1138.15003
[21] DOI: 10.1142/S1005386709000297 · Zbl 1176.15020
[22] DOI: 10.1016/j.amc.2006.06.012 · Zbl 1108.15014
[23] Wang Q. W., Comment. Math. Univ. Carolinae 39 pp 7–
[24] DOI: 10.1016/0024-3795(95)00543-9 · Zbl 0873.15008
[25] DOI: 10.1016/j.laa.2006.08.004 · Zbl 1117.15017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.