×

On the uniqueness of positive solutions of a quasilinear equation containing a weighted \(p\)-Lalaplacian, the superlinear case. (English) Zbl 1188.35090

Summary: We consider the quasilinear equation of the form
\[ -\Delta_pu= K(|x|)/f(u), \quad x\in\mathbb R^n,\;n>p>1, \]
where \(\Delta_pu:= \text{div}(|\nabla u|^{p-2}\nabla u)\) is the degenerate \(p\)-Laplace operator and the weight \(K\) is a positive \(C^1\) function defined in \(\mathbb R^+\). We deal with the case in which \(f\in C[0,\infty)\) has one zero at \(u_0>0\), is non positive and not identically 0 in \((0,u_0)\), and is locally Lipschitz, positive and satisfies some superlinear growth assumption in \((u_0,\infty)\). We carefully study the behavior of the solution of the corresponding initial value problem for the radial version of the quasilinear equation, as well as the behavior of its derivative with respect to the initial value. Combining, as Cortázar, Felmer and Elgueta, comparison arguments due to Coffman and Kwong, with some separation results, we show that any zero of the solutions of the initial value problem is monotone decreasing with respect to the initial value, which leads immediately the uniqueness of positive radial ground states, and the uniqueness of positive radial solutions of the Dirichlet problem on a ball.

MSC:

35J70 Degenerate elliptic equations
35J60 Nonlinear elliptic equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1007/BF00279958 · Zbl 0605.70008 · doi:10.1007/BF00279958
[2] Berestycki H., Arch. Ration. Mech. Anal. 82 pp 313–
[3] DOI: 10.1080/03605309108820811 · Zbl 0753.35034 · doi:10.1080/03605309108820811
[4] Coffman C. V., Arch. Ration. Mech. Anal. 46 pp 81–
[5] Cortázar C., Adv. Differential Equations 1 pp 199–
[6] Cortázar C., Arch. Ration. Mech. Anal. 142 pp 127–
[7] Cortázar C., Comm. Pure Appl. Anal. 5 pp 813–
[8] Citti G., Boll. Un. Mat. Ital. 7 pp 283–
[9] DOI: 10.1006/jdeq.1997.3279 · Zbl 0884.34025 · doi:10.1006/jdeq.1997.3279
[10] DOI: 10.1006/aima.1996.0021 · Zbl 0853.35035 · doi:10.1006/aima.1996.0021
[11] García-Huidobro M., Adv. Differential Equations 6 pp 1517–
[12] DOI: 10.1016/j.jde.2005.04.012 · Zbl 1170.35404 · doi:10.1016/j.jde.2005.04.012
[13] Kawano T., Funkcial. Ekvak 36 pp 121–
[14] Kwong M. K., Arch. Ration. Mech. Anal. 105 pp 243–
[15] Kwong M. K., Differential Integral Equations 4 pp 583–
[16] DOI: 10.1007/BF01053462 · Zbl 0705.35039 · doi:10.1007/BF01053462
[17] DOI: 10.1007/BF00387895 · Zbl 0764.35013 · doi:10.1007/BF00387895
[18] DOI: 10.1007/BF00387896 · Zbl 0764.35014 · doi:10.1007/BF00387896
[19] Matukuma T., The Cosmos (1938)
[20] McLeod K., Trans. Amer. Math. Soc. 339 pp 495–
[21] DOI: 10.1007/BF00275874 · Zbl 0667.35023 · doi:10.1007/BF00275874
[22] Peletier L., Arch. Ration. Mech. Anal. 81 pp 181–
[23] DOI: 10.1016/0022-0396(86)90112-9 · Zbl 0577.35035 · doi:10.1016/0022-0396(86)90112-9
[24] DOI: 10.1007/s10231-004-0143-3 · Zbl 1115.35050 · doi:10.1007/s10231-004-0143-3
[25] Pucci P., Indiana Univ. Math. J. 47 pp 529–
[26] Serrin J., Indiana Univ. Math. J. 49 pp 897–
[27] DOI: 10.1007/BF02820473 · Zbl 0675.35040 · doi:10.1007/BF02820473
[28] DOI: 10.1007/BF00380770 · Zbl 0737.35026 · doi:10.1007/BF00380770
[29] DOI: 10.1006/jdeq.1995.1024 · Zbl 0813.34036 · doi:10.1006/jdeq.1995.1024
[30] DOI: 10.1007/BF00379534 · Zbl 0862.35007 · doi:10.1007/BF00379534
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.