Ito, Hiroshi T.; Yamada, Osanobu A note on the nonrelativistic limit of Dirac operators and spectral concentration. (English) Zbl 1188.35157 Proc. Japan Acad., Ser. A 81, No. 10, 157-161 (2005). Summary: We study the nonrelativistic limit of Dirac operators from the viewpoint of the spectral relationship between Dirac operators and Pauli operators. We show that Dirac operators have spectral concentration about eigenvalues of Pauli operators for a large class of magnetic fields and electric potentials diverging at infinity. Cited in 4 Documents MSC: 35Q40 PDEs in connection with quantum mechanics 35P99 Spectral theory and eigenvalue problems for partial differential equations 81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis Keywords:Dirac operators; nonrelativistic limit; Pauli operators; spectral concentration PDF BibTeX XML Cite \textit{H. T. Ito} and \textit{O. Yamada}, Proc. Japan Acad., Ser. A 81, No. 10, 157--161 (2005; Zbl 1188.35157) Full Text: DOI OpenURL References: [1] S. Agmon, Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of \(N\)-body Schrödinger operators , Princeton Univ. Press, Princeton, NJ, 1982. · Zbl 0503.35001 [2] L. Amour, R. Brummelhuis and J. Nourrigat, Resonances of the Dirac Hamiltonian in the non relativistic limit, Ann. Henri Poincaré 2 (2001), no. 3, 583-603. · Zbl 0996.81022 [3] R. J. Cirincione and P. R. Chernoff, Dirac and Klein-Gordon equations: convergence of solutions in the nonrelativistic limit, Comm. Math. Phys. 79 (1981), no. 1, 33-46. · Zbl 0471.35024 [4] D. R. Grigore, G. Nenciu and R. Purice, On the nonrelativistic limit of the Dirac Hamiltonian, Ann. Inst. H. Poincaré Phys. Théor. 51 (1989), no. 3, 231-263. · Zbl 0705.35115 [5] B. Helffer and J. Sjöstrand, Equation de Schrödinger avec champ magnétique et équation de Harper, in Schrödinger operators ( Sønderborg , 1988), 118-197, Lecture Notes in Phys., 345, Springer, Berlin, (1989). · Zbl 0699.35189 [6] W. Hunziker, On the nonrelativistic limit of the Dirac theory, Comm. Math. Phys. 40 (1975), 215-222. [7] T. Ikebe and T. Kato, Uniqueness of the self-adjoint extension of singular elliptic differential operators, Arch. Rational Mech. Anal. 9 (1962), 77-92. · Zbl 0103.31801 [8] Isozaki, H., Many-body Schrödinger equations , Springer-Verlag, Tokyo, 2004. (In Japanese). · Zbl 1050.35092 [9] H. Kalf, T. Ōkaji and O. Yamada, Absence of eigenvalues of Dirac operators with potentials diverging at infinity, Math. Nachr. 259 (2003), 19-41. · Zbl 1038.35044 [10] M. Reed and B. Simon, Methods of modern mathematical physics . I . Functional analysis , Academic Press, New York, 1972. · Zbl 0242.46001 [11] M. Reed and B. Simon, Methods of modern mathematical physics . IV . Analysis of operators , Academic Press, New York, 1978. · Zbl 0401.47001 [12] K. M. Schmidt and O. Yamada, Spherically symmetric Dirac operators with variable mass and potentials infinite at infinity, Publ. Res. Inst. Math. Sci. 34 (1998), no. 3, 211-227. · Zbl 0967.35118 [13] Z. Shen, Eigenvalue asymptotics and exponential decay of eigenfunctions for Schrödinger operators with magnetic fields, Trans. Amer. Math. Soc. 348 (1996), no. 11, 4465-4488. · Zbl 0866.35088 [14] E. C. Titchmarsh, A problem in relativistic quantum mechanics, Proc. London Math. Soc. (3) 11 (1961), 169-192. · Zbl 0166.34701 [15] J. Uchiyama and O. Yamada, Sharp estimates of lower bounds of polynomial decay order of eigenfunctions, Publ. Res. Inst. Math. Sci. 26 (1990), no. 3, 419-449. · Zbl 0737.35044 [16] K. Veselić, The nonrelativistic limit of the Dirac equation and the spectral concentration, Glasnik Mat. Ser. III 4 (24) (1969), 231-241. · Zbl 0212.16402 [17] K. Yajima, Nonrelativistic limit of the Dirac theory, scattering theory, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), no. 3, 517-523. · Zbl 0341.47001 [18] O. Yamada, On the spectrum of Dirac operators with the unbounded potential at infinity, Hokkaido Math. J. 26 (1997), no. 2, 439-449. · Zbl 0882.35084 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.