×

Global well-posedness of the KP-I initial-value problem in the energy space. (English) Zbl 1188.35163

Summary: We prove that the KP-I initial-value problem
\[ \begin{cases} \partial_tu+\partial_x^3u-\partial_x^{-1}\partial_y^2u+\partial_x(u^2/2)=0 &\text{on}\,\mathbb{R}^2_{x,y}\times\mathbb{R}_t;\\ u(0)=\varphi, \end{cases} \]
is globally well-posed in the energy space
\[ \mathbf{E}^1(\mathbb{R}^2)=\big\{\phi:\mathbb{R}^2\to\mathbb{R}: \|\varphi\|_{\mathbf{E}^1(\mathbb{R}^2)}\approx\|\varphi\|_{L^2}+\|\partial_x\varphi\|_{L^2}+\big\|\partial_x^{-1}\partial_y\varphi\big\|_{L^2}<\infty\big\}. \]

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35B45 A priori estimates in context of PDEs
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Ablowitz, M.J., Clarkson, P.A.: Solitons, nonlinear evolution equations and inverse scattering. Lond. Math. Soc. Lect. Note Ser., vol. 149. Cambridge University Press, Cambridge (1991) · Zbl 0762.35001
[2] Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM Stud. Appl. Math., vol. 4. Soc. Ind. Appl. Math. (SIAM), Philadelphia, Pa. (1981) · Zbl 0472.35002
[3] Alexander, J.C., Pego, R.L., Sachs, R.L.: On the transverse instability of solitary waves in the Kadomtsev–Petviashvili equation. Phys. Lett., A 226, 187–192 (1997) · Zbl 0962.35505
[4] Ben-Artzi, M., Saut, J.-C.: Uniform decay estimates for a class of oscillatory integrals and applications. Differ. Integral Equ. 12, 137–145 (1999) · Zbl 1016.35006
[5] Bona, J.L., Smith, R.: The initial-value problem for the Korteweg–de Vries equation. Philos. Trans. R. Soc. Lond., Ser. A 278, 555–601 (1975) · Zbl 0306.35027
[6] Bona, J.L., Souganidis, P.E., Strauss, W.A.: Stability and instability of solitary waves of Korteweg–de Vries type. Proc. R. Soc. Lond., Ser. A 411, 395–412 (1987) · Zbl 0648.76005
[7] De Bouard, A., Saut, J.-C.: Solitary waves of generalized Kadomtsev–Petviashvili equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 14, 211–236 (1997) · Zbl 0883.35103
[8] Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations II. The KdV-equation. Geom. Funct. Anal. 3, 209–262 (1993) · Zbl 0787.35098
[9] Bourgain, J.: On the Cauchy problem for the Kadomtsev–Petviashvili equation. Geom. Funct. Anal. 3, 315–341 (1993) · Zbl 0787.35086
[10] Cazenave, T., Lions, P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85, 549–561 (1982) · Zbl 0513.35007
[11] Christ, M., Colliander, J., Tao, T.: A priori bounds and weak solutions for the nonlinear Schrödinger equation in Sobolev spaces of negative order. Preprint (2006) · Zbl 1136.35087
[12] Colliander, J., Ionescu, A.D., Kenig, C.E., Staffilani, G.: Weighted low-regularity solutions of the KP-I initial-value problem. Preprint (2007) · Zbl 1142.35076
[13] Ionescu, A.D., Kenig, C.E.: Local and global well-posedness of periodic KP-I equations. In: Mathematical Aspects of Nonlinear Dispersive Equations. Ann. Math. Stud., vol. 163, pp.181–211. Princeton Univ. Press, Princeton, NJ (2007) · Zbl 1387.35528
[14] Iorio, R.J., Nunes, W.V.L.: On equations of KP-type. Proc. R. Soc. Edinb., Sect. A, Math. 128, 725–743 (1998) · Zbl 0911.35103
[15] Kenig, C.E., Ponce, G., Vega, L.: Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle. Commun. Pure Appl. Math. 46, 527–620 (1993) · Zbl 0808.35128
[16] Kenig, C.E., Ponce, G., Vega, L.: The Cauchy problem for the Korteweg–de Vries equation in Sobolev spaces of negative indices. Duke Math. J. 71, 1–21 (1993) · Zbl 0787.35090
[17] Kenig, C.E.: On the local and global well-posedness theory for the KP-I equation. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 21, 827–838 (2004) · Zbl 1072.35162
[18] Kenig, C.E., Martel, Y.: Asymptotic stability of solitons for the Benjamin–Ono equation. Preprint (2008) · Zbl 1247.35133
[19] Klainerman, S., Machedon, M.: Space-time estimates for null forms and the local existence theorem. Commun. Pure Appl. Math. 46, 1221–1268 (1993) · Zbl 0803.35095
[20] Koch, H., Tataru, D.: A-priori bounds for the 1-d cubic NLS in negative Sobolev spaces. Preprint (2006) · Zbl 1169.35055
[21] Martel, Y., Merle, F.: Asymptotic stability of solitons for subcritical generalized KdV equations. Arch. Ration. Mech. Anal. 157, 219–254 (2001) · Zbl 0981.35073
[22] Martel, Y., Merle, F.: Asymptotic stability of solitons of the subcritical gKdV equations revisited. Nonlinearity 18, 55–80 (2005) · Zbl 1064.35171
[23] Molinet, L., Saut, J.-C., Tzvetkov, N.: Well-posedness and ill-posedness results for the Kadomtsev–Petviashvili-I equation. Duke Math. J. 115, 353–384 (2002) · Zbl 1033.35103
[24] Molinet, L., Saut, J.-C., Tzvetkov, N.: Global well-posedness for the KP-I equation. Math. Ann. 324, 255–275 (2002) · Zbl 1008.35060
[25] Molinet, L., Saut, J.-C., Tzvetkov, N.: Correction: Global well-posedness for the KP-I equation. Math. Ann. 328, 707–710 (2004) · Zbl 1055.35103
[26] Rousset, F., Tzvetkov, N.: Transverse nonlinear instability for two-dimensional dispersive models. Preprint (2007) · Zbl 1169.35374
[27] Saut, J.-C.: Remarks on the generalized Kadomtsev–Petviashvili equations. Indiana Univ. Math. J. 42, 1011–1026 (1993) · Zbl 0814.35119
[28] Takaoka, H., Tzvetkov, N.: On the local regularity of the Kadomtsev–Petviashvili-II equation. Int. Math. Res. Not. 2001, 77–114 (2001) · Zbl 0977.35126
[29] Tataru, D.: Local and global results for wave maps I. Commun. Partial Differ. Equations 23, 1781–1793 (1998) · Zbl 0914.35083
[30] Weinstein, M.I.: Lyapunov stability of ground states of nonlinear dispersive evolution equations. Commun. Pure Appl. Math. 39, 51–67 (1986) · Zbl 0594.35005
[31] Weinstein, M.I.: Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation. Commun. Partial Differ. Equations 12, 1133–1173 (1987) · Zbl 0657.73040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.