zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exact three-wave solution for higher dimensional KdV-type equation. (English) Zbl 1188.35169
Summary: A new periodic type of three-wave solutions including periodic two-solitary solution, doubly periodic solitary solution and breather type of two-solitary solution for the $(1+2)$-dimensional and $(1+3)$-dimensional KdV-type equations are obtained using Hirota’s bilinear form and generalized three-wave type of ansatz approach.

35Q53KdV-like (Korteweg-de Vries) equations
35C08Soliton solutions of PDE
35B10Periodic solutions of PDE
35A24Methods of ordinary differential equations for PDE
Full Text: DOI
[1] Ablowitz, M. J.; Clarkson, P. A.: Solitons, Nonlinear evolution equations and inverse scattering (1991) · Zbl 0762.35001
[2] Hirota, R.: Exact solution of the Korteweg -- de-Vries equation for multiple collisions of solitons, Phys. lett. A. 27, 1192-1194 (1971) · Zbl 1168.35423 · doi:10.1103/PhysRevLett.27.1192
[3] Miurs, M. R.: Bäcklund transformation, (1978)
[4] Sawada, K.; Kotera, T.: A method for finding N-soliton solutions of the KdV equation and KdV-like equation, Prog. theor. Phys 51, 1355-1362 (1974) · Zbl 1125.35400 · doi:10.1143/PTP.51.1355
[5] Yan, C.: A simple transformation for nonlinear waves, Phys. lett. A 224, 77-784 (1996) · Zbl 1037.35504 · doi:10.1016/S0375-9601(96)00770-0
[6] Wang, M. L.: Exact solutions for a compound KdV -- burger equation, Phys. lett. A 213, 279-287 (1996) · Zbl 0972.35526 · doi:10.1016/0375-9601(96)00103-X
[7] El-Wakil, S. A.; Abdou, M. A.: New exact travelling wave solutions of two nonlinear physical models, Non-linear anal 68, 235-245 (2008) · Zbl 1135.34003 · doi:10.1016/j.na.2006.10.045
[8] Boiti, M.; Leon, J.; Manna, M.; Pempinelli, F.: On the spectral transform of Korteweg -- de Vries equation in two spatial dimensions, Inverse prob. 2, 271-279 (1986) · Zbl 0617.35119 · doi:10.1088/0266-5611/2/3/005
[9] Wazwaz, A. M.: Single and multiple-soliton solutions for the (2+1)-dimensional KdV equation, Appl. math. Comput. 204, 20-26 (2008) · Zbl 1160.35531 · doi:10.1016/j.amc.2008.05.126
[10] Zayad, E. M. E.; Zedan, H. A.; Gepreel, K. A.: Group analysis and modified extended tanh-function to find the invariant solutions and soliton solutions for nonlinear Euler equation, Int. J. Nonlinear sci. Numer. simul. 5, 221 (2004)
[11] Zhang, S.: A generalized auxiliary equation method and its application to the (2+1)-dimensional KdV equation, Appl. math. Comput. 188, 1-6 (2007) · Zbl 1114.65355 · doi:10.1016/j.amc.2006.09.068
[12] Zhang, S.: Exp-function method exactly solving a KdV equation with forcing term, Appl. math. Comput. 197, 128-134 (2008) · Zbl 1135.65388 · doi:10.1016/j.amc.2007.07.041
[13] He, J. H.; Wu, X. H.: Exp-function method for nonlinear wave equation, Chaos solitons frac. 30, 700-708 (2006) · Zbl 1141.35448 · doi:10.1016/j.chaos.2006.03.020
[14] Dai, Z. D.; Liu, Z. J.; Li, D. L.: Exact periodic solitary-wave solution for KdV equation, Chin. phys. Lett. 25, 1531-1532 (2008)
[15] Dai, Z. D.; Jiang, M. R.; Dai, Q. Y.; Li, S. L.: Homoclinic bifurcation for Boussinesq equation with even constrain, Chin. phys. Lett. 23, 1065-1067 (2006)
[16] Dai, Z. D.; Liu, J.; Li, D. L.: Applications of HTA and EHTA to YTSF equation, Appl. math. Comput. 207, 360-364 (2009) · Zbl 1159.35408 · doi:10.1016/j.amc.2008.10.042
[17] Dai, Z. D.; Liu, J.; Zeng, X. P.; Liu, Z. J.: Periodic kink-wave and kinky periodic-wave solutions for the Jimbo -- Miwa equation, Phys. lett. A 372, 5984-5986 (2008) · Zbl 1223.35267 · doi:10.1016/j.physleta.2008.07.064
[18] Wang, C. J.; Dai, Z. D.; Mu, G.; Lin, S. Q.: New exact periodic solitary-wave solutions for new (2+1)-dimensional KdV equation, Commun. theor. Phys. 52, 862-864 (2009) · Zbl 1186.35193 · doi:10.1088/0253-6102/52/5/21
[19] Lou, S. Y.: Dromion-like structures in a (3+1)-dimensional KdV-type equation, J. phys. A: math. Gen., No. 29, 5989-6001 (1996) · Zbl 0903.35064 · doi:10.1088/0305-4470/29/18/027