×

Exact traveling wave solutions of a higher-dimensional nonlinear evolution equation. (English) Zbl 1188.37063

Summary: The exact traveling wave solutions of (4 + 1)-dimensional nonlinear Fokas equation is obtained by using three distinct methods with symbolic computation. The modified tanh-coth method is implemented to obtain single soliton solutions whereas the extended Jacobi elliptic function method is applied to derive doubly periodic wave solutions for this higher-dimensional integrable equation. The Exp-function method gives generalized wave solutions with some free parameters. It is shown that soliton solutions and triangular solutions can be established as the limits of the Jacobi doubly periodic wave solutions.

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
35C07 Traveling wave solutions
35Q53 KdV equations (Korteweg-de Vries equations)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1017/CBO9780511623998
[2] DOI: 10.1016/j.cnsns.2006.01.013 · Zbl 1350.35166
[3] DOI: 10.1016/j.cam.2008.10.052 · Zbl 1166.65050
[4] DOI: 10.1088/0031-8949/76/5/007 · Zbl 1131.35068
[5] DOI: 10.1016/j.physleta.2008.11.018 · Zbl 1227.35231
[6] DOI: 10.1016/j.chaos.2005.10.032 · Zbl 1139.35388
[7] DOI: 10.1016/S0375-9601(02)01516-5 · Zbl 1005.35063
[8] Fokas A. S., Phys. Rev. Lett. 96 pp 190–
[9] Ghorbani A., Int. J. Nonlin. Sci. Numer. Simul. 8 pp 229–
[10] He J. H., Int. J. Nonlin. Sci. Numer. Simul. 6 pp 207–
[11] DOI: 10.1016/j.chaos.2006.03.020 · Zbl 1141.35448
[12] DOI: 10.1016/j.chaos.2006.05.072 · Zbl 1152.35441
[13] DOI: 10.1016/j.chaos.2005.11.033
[14] DOI: 10.1016/j.physleta.2007.08.059 · Zbl 1217.35152
[15] Mokhtari R., Int. J. Nonlin. Sci. Numer. Simul. 9 pp 19–
[16] DOI: 10.1119/1.17120 · Zbl 1219.35246
[17] DOI: 10.1016/j.chaos.2009.03.043 · Zbl 1198.35231
[18] DOI: 10.1016/S0378-4371(04)00860-X
[19] DOI: 10.1016/S0375-9601(02)00971-4 · Zbl 0997.35066
[20] DOI: 10.1016/0020-7462(95)00064-X · Zbl 0863.35106
[21] DOI: 10.1016/j.physleta.2006.11.048 · Zbl 1203.35059
[22] DOI: 10.1016/S0034-4877(08)80032-8 · Zbl 1166.35032
[23] DOI: 10.1016/j.cnsns.2008.08.004 · Zbl 1221.35320
[24] Wazwaz A. M., Appl. Math. Comput. 203 pp 592–
[25] Wu X. H., Chaos, Solitons & Fractals 38 pp 903–
[26] DOI: 10.1016/j.chaos.2007.02.004 · Zbl 1152.35485
[27] Yang Z. Z., Commun. Theor. Phys. 51 pp 876–
[28] DOI: 10.1016/j.chaos.2008.04.027 · Zbl 1198.65206
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.