zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence of positive solutions of a discrete elastic beam equation. (English) Zbl 1188.39008
Let $T$ be an integer with $T\ge 5$ and let $\Bbb T_2=\{2,3,\dots,T\}$. We consider the existence of positive solutions of the nonlinear boundary value problems of fourth-order difference equations $$\Delta^4u(t-2)-ra(t)f(u(t))=0,\quad t\in \Bbb T_2,\ u(1)=u(T+1)=\Delta^2u(0)=\Delta^2u(T)=0,$$ where $r$ is a constant, $a:\Bbb T_2\to (0,\infty)$, and $f:[0,\infty)\to [0,\infty)$ is continuous. Our approaches are based on the Krein-Rutman theorem and the global bifurcation theorem.

MSC:
39A12Discrete version of topics in analysis
34B15Nonlinear boundary value problems for ODE
74K10Rods (beams, columns, shafts, arches, rings, etc.) in solid mechanics
39A10Additive difference equations
WorldCat.org
Full Text: DOI EuDML
References:
[1] C. P. Gupta, “Existence and uniqueness theorems for the bending of an elastic beam equation,” Applicable Analysis, vol. 26, no. 4, pp. 289-304, 1988. · Zbl 0611.34015 · doi:10.1080/00036818808839715
[2] C. P. Gupta, “Existence and uniqueness results for the bending of an elastic beam equation at resonance,” Journal of Mathematical Analysis and Applications, vol. 135, no. 1, pp. 208-225, 1988. · Zbl 0655.73001 · doi:10.1016/0022-247X(88)90149-7
[3] A. R. Aftabizadeh, “Existence and uniqueness theorems for fourth-order boundary value problems,” Journal of Mathematical Analysis and Applications, vol. 116, no. 2, pp. 415-426, 1986. · Zbl 0634.34009 · doi:10.1016/S0022-247X(86)80006-3
[4] Y. S. Yang, “Fourth-order two-point boundary value problems,” Proceedings of the American Mathematical Society, vol. 104, no. 1, pp. 175-180, 1988. · Zbl 0671.34016 · doi:10.2307/2047481
[5] M. A. Del Pino and R. F. Manásevich, “Multiple solutions for the p-Laplacian under global nonresonance,” Proceedings of the American Mathematical Society, vol. 112, no. 1, pp. 131-138, 1991. · Zbl 0725.34021 · doi:10.2307/2048489
[6] M. Galewski, “On the nonlinear elastic beam equation,” Applied Mathematics and Computation, vol. 202, no. 1, pp. 427-434, 2008. · Zbl 1153.74030 · doi:10.1016/j.amc.2008.04.022
[7] Q. Yao, “Positive solutions of a nonlinear elastic beam equation rigidly fastened on the left and simply supported on the right,” Nonlinear Analysis: Theory, Methods & Applications, vol. 69, no. 5-6, pp. 1570-1580, 2008. · Zbl 1217.34039 · doi:10.1016/j.na.2007.07.002
[8] R. Ma and H. Wang, “On the existence of positive solutions of fourth-order ordinary differential equations,” Applicable Analysis, vol. 59, no. 1-4, pp. 225-231, 1995. · Zbl 0841.34019 · doi:10.1080/00036819508840401
[9] R. Ma, “Existence of positive solutions of a fourth-order boundary value problem,” Applied Mathematics and Computation, vol. 168, no. 2, pp. 1219-1231, 2005. · Zbl 1082.34023 · doi:10.1016/j.amc.2004.10.014
[10] Z. Bai and H. Wang, “On positive solutions of some nonlinear fourth-order beam equations,” Journal of Mathematical Analysis and Applications, vol. 270, no. 2, pp. 357-368, 2002. · Zbl 1006.34023 · doi:10.1016/S0022-247X(02)00071-9
[11] G. Chai, “Existence of positive solutions for fourth-order boundary value problem with variable parameters,” Nonlinear Analysis: Theory, Methods & Applications, vol. 26, pp. 289-304, 2007. · Zbl 1113.34008 · doi:10.1016/j.na.2005.12.028
[12] Q. L. Yao and Z. B. Bai, “Existence of positive solutions of a BVP for u(4)(t) - \lambda h(t)f(u(t))=0,” Chinese Annals of Mathematics A, vol. 20, no. 5, pp. 575-578, 1999 (Chinese). · Zbl 0948.34502
[13] R. P. Agarwal and P. J. Y. Wong, Advanced Topics in Difference Equations, vol. 404 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997. · Zbl 0878.39001
[14] J. Henderson, “Positive solutions for nonlinear difference equations,” Nonlinear Studies, vol. 4, no. 1, pp. 29-36, 1997. · Zbl 0883.39002
[15] Z. He and J. Yu, “On the existence of positive solutions of fourth-order difference equations,” Applied Mathematics and Computation, vol. 161, no. 1, pp. 139-148, 2005. · Zbl 1068.39008 · doi:10.1016/j.amc.2003.12.016
[16] B. Zhang, L. Kong, Y. Sun, and X. Deng, “Existence of positive solutions for BVPs of fourth-order difference equations,” Applied Mathematics and Computation, vol. 131, no. 2-3, pp. 583-591, 2002. · Zbl 1025.39006 · doi:10.1016/S0096-3003(01)00171-0
[17] P. W. Eloe and J. Henderson, “Positive solutions and nonlinear multipoint conjugate eigenvalue problems,” Electronic Journal of Differential Equations, no. 3, 11 pages, 1997. · Zbl 0888.34013 · emis:journals/EJDE/Volumes/1997/03/abstr.html · eudml:119392
[18] E. N. Dancer, “Global solution branches for positive mappings,” Archive for Rational Mechanics and Analysis, vol. 52, pp. 181-192, 1973. · Zbl 0275.47043 · doi:10.1007/BF00282326
[19] R. Ma and J. Xu, “Bifurcation from interval and positive solutions of a nonlinear fourth-order boundary value problem,” Nonlinear Analysis: Theory, Methods & Applications, vol. 72, no. 1, pp. 113-122, 2010. · Zbl 1200.34023 · doi:10.1016/j.na.2009.06.061
[20] W. G. Kelley and A. C. Peterson, Difference Equations, An Introduction with Application, Harcourt/Academic Press, San Diego, Calif, USA, 2nd edition, 2001. · Zbl 0970.39001
[21] E. Zeidler, Nonlinear Functional Analysis and Its Applications, I. Fixed-Point Theorems, Springer, New York, NY, USA, 1986. · Zbl 0583.47050