zbMATH — the first resource for mathematics

Weighted Dirac combs with pure point diffraction. (English) Zbl 1188.43008
Summary: A class of translation bounded complex measures, which have the form of weighted Dirac combs, on locally compact Abelian groups is investigated. Given such a Dirac comb, we are interested in its diffraction spectrum which emerges as the Fourier transform of the autocorrelation measure. We present a sufficient set of conditions to ensure that the diffraction measure is a pure point measure. Simultaneously, we establish a natural link to the theory of the cut and project formalism and to the theory of almost periodic measures. Our conditions are general enough to cover the known theory of model sets, but also to include examples such as the visible lattice points.

43A80 Analysis on other specific Lie groups
52C23 Quasicrystals and aperiodic tilings in discrete geometry
82D25 Statistical mechanics of crystals
Full Text: DOI
[1] J.P. Allouche and M. Mendes France, Automata and automatic sequences, in: Beyond Quasicrystals, F. Axel and D. Gratias, eds., Les Editions de Physique, Les Ulis, and Springer, Berlin (1995), 293-367. · Zbl 0881.11026
[2] M. Baake, A guide to mathematical quasicrystals, in: Quasicrystals, J.B. Suck, M. Schreiber and P. H ussler, eds., Springer, Berlin (2002), 17-48.
[3] Lett. Math. Phys. 49 pp 217– (1999)
[4] Baake M., J. Phys. A: Math. Gen. 30 pp 3029– (1997)
[5] Baake M., J. Stat. Phys. 99 pp 219– (2000)
[6] Baake M., R pp 1– (2000)
[7] Baake M., Discr. Math. 221 pp 3– (2000)
[8] Baake M., J. Phys. A: Math. Gen. 31 pp 5755– (1998)
[9] C. Berg and G. Forst, Potential Theory on Locally Compact Abelian Groups, Springer, Berlin1975. · Zbl 0308.31001
[10] Bernuau G., R pp 43– (2000)
[11] Bochner S., Acta Math. 61 pp 149– (1933)
[12] N. Bourbaki, Elements of Mathematics: General Topology, Chapters 1-4 and 5-10, reprint, Springer, Berlin 1989. · Zbl 0683.54004
[13] J. M. Cowley, Di raction Physics, 3rd ed., North-Holland, Amsterdam 1995.
[14] Dworkin S., J. Math. Phys. 34 pp 2965– (1993)
[15] R. E. Edwards, Integration and Harmonic Analysis on Compact Groups, Cambridge University Press, Cambridge1972. · Zbl 0231.43001
[16] A. C., J. Stat. Phys. 66 pp 1147– (1992)
[17] van Enter A. C. D., J. Phys. A: Math. Gen. 25 pp L1133– (1992)
[18] F. G hler and R. Klitzing, The di raction pattern of self-similar tilings, in: The Mathematics of Long-Range Aperiodic Order, R. V. Moody, ed., NATO ASI Ser. C 489, Kluwer, Dordrecht (1997), 141-174.
[19] J. Gil de Lamadrid and L. N. Argabright, Almost Periodic Measures, Mem. AMS428, AMS, Providence, RI, 1990. · Zbl 0719.43006
[20] V. P. Gurarii, Group Methods in Commutative Harmonic Analysis, published as: Commutative Harmonic Analysis II, V. P. Havin and N. K. Nikolski, eds., EMS 25, Springer, Berlin 1998.
[21] Hermisson J., J. Phys. I (France) 7 pp 1003– (1997)
[22] Commun. Math. Phys. 169 pp 25– (1995)
[23] J. Phys. A: Math. Gen. 28 pp 57– (1995)
[24] J., R pp 61– (2000)
[25] Lee J.-Y., Discr. Comput. Geom. 25 pp 173– (2001)
[26] J.Y. Lee, R. V. Moody and B. Solomyak, Pure point dynamical and di raction spectra, Ann. H. Poincare 3 (2002), 1003-1018. · Zbl 1025.37004
[27] Lee J.-Y., Discr. Comput. Geom. 29 pp 525– (2003)
[28] G. Matheron, The internal consistency of models in geostatistics, in: Geostatistics, vol. 1, ed. M. Armstrong, Kluwer, Dordrecht (1989), 21-38.
[29] R. V. Moody, Model sets: A survey, in: From Quasicrystals to More Complex Systems, F. Axel, F. Denoyer and J. P. Gazeau, eds., EDP Sciences, Les Ulis, and Springer, Berlin (2000), 145-166.
[30] R., Can. Math. Bulletin 45 pp 123– (2002)
[31] B. von Querenburg, Mengentheoretische Topologie, 2nd ed., Springer, Berlin 1979.
[32] M. Reed and B. Simon, Methods of Modern Mathematical Physics I: Functional Analysis, 2nd ed., Academic Press, San Diego, CA, 1980. · Zbl 0459.46001
[33] Rudin W., New York pp 1990– (1962)
[34] D. Ruelle, Statistical Mechanics Rigorous Results, reprint, Addison Wesley, Redwood City, CA, 1989. · Zbl 1016.82500
[35] R pp 247– (1998)
[36] R pp 143– (2000)
[37] R pp 265– (1998)
[38] Ergod. Th. Dynam. Syst. 17 pp 695– (1997)
[39] Zaidman S., RNM 126 pp 1985–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.