zbMATH — the first resource for mathematics

The \(h\)-Laplace and \(q\)-Laplace transforms. (English) Zbl 1188.44008
For a given function \(x\) with complex values the \(h\)-Laplace transform is defined as
\[ (h/(1+hz))\sum^\infty_{k=0}x(kh)/(1+ hz)^k, \]
and the \(q\)-Laplace transform as
\[ (q-1)\sum^\infty_{n=0} q^nx(q^n)/\prod^n_{k=0} (1+(q- 1)q^k z), \]
where \(z\) is the complex variable in the image domain. Most properties of the usual Laplace transform are transferred to these two transforms. It is shown that all these transforms are special cases of a more general Laplace transform on time scales.

44A55 Discrete operational calculus
44A10 Laplace transform
Full Text: DOI
[1] Abdi, W.H., On q-Laplace transforms, Proc. natl. acad. sci. India sect. A, 29, 389-408, (1960) · Zbl 0168.38303
[2] Abdi, W.H., On certain q-difference equations and q-Laplace transform, Proc. Indian nat. sci. acad. part A, 28, 1-15, (1962) · Zbl 0105.30601
[3] Abdi, W.H., Certain inversion and representation formulae for q-Laplace transforms, Math. Z., 83, 238-249, (1964) · Zbl 0123.30102
[4] Bohner, M.; Guseinov, G.Sh., The convolution on time scales, Abstr. appl. anal., 2007, 24, (2007), Art. ID 54989 · Zbl 1155.39010
[5] Bohner, M.; Peterson, A., Dynamic equations on time scales: an introduction with applications, (2001), Birkhäuser Boston · Zbl 0978.39001
[6] Bohner, M.; Peterson, A., Laplace transform and Z-transform: unification and extension, Methods appl. anal., 9, 1, 151-157, (2002), preprint in Ulmer Seminare 6 · Zbl 1031.44001
[7] Bohner, M.; Peterson, A., Advances in dynamic equations on time scales, (2003), Birkhäuser Boston · Zbl 1025.34001
[8] Feinsilver, P., Elements of q-harmonic analysis, J. math. anal. appl., 141, 2, 509-526, (1989) · Zbl 0711.42029
[9] Hahn, W., Beiträge zur theorie der heineschen reihen. die 24 integrale der hypergeometrischen q-differenzengleichung. das q-analogon der Laplace-transformation, Math. nachr., 2, 340-379, (1949) · Zbl 0033.05703
[10] Hahn, W., Über die höheren heineschen reihen und eine einheitliche theorie der sogenannten speziellen funktionen, Math. nachr., 3, 257-294, (1950) · Zbl 0038.05002
[11] Hilger, S., Analysis on measure chains — A unified approach to continuous and discrete calculus, Results math., 18, 18-56, (1990) · Zbl 0722.39001
[12] Hilger, S.; Agarwal, R.P.; Bohner, M., Special functions, Laplace and Fourier transform on measure chains, Discrete and continuous Hamiltonian systems, Dynam. systems appl., 8, 3-4, 471-488, (1999), (special issue) · Zbl 0943.39006
[13] Kac, V.; Cheung, P., Quantum calculus, Universitext, (2002), Springer-Verlag New York · Zbl 0986.05001
[14] Kelley, W.G.; Peterson, A.C., Difference equations: an introduction with applications, (2001), Academic Press San Diego · Zbl 0970.39001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.