zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Invariant approximation for CAT(0) spaces. (English) Zbl 1188.54022
In the year 2008, {\it T. Suzuki} [J. Math. Anal. Appl. 340, No. 2, 1088--1095 (2008; Zbl 1140.47041)] showed the following: Let $T$ be a mapping on a subset $C$ of a Banach space $E$. Then $T$ is said to satify condition (C) if $$(1/2) \|x-Tx\| \leq \|x-y\|, $$ for all $x,y \in C$. In this paper, the authors apply this to the solution of the problem for commuting pairs consisting of a single valued mapping and a multivalued mapping in CAT(0) spaces. For this a multivalued version of condition (C) in CAT(0) spaces has been defined. In this way the authors improve and extend the results of {\it N. Shahzad} and {\it J. Markin}, in [J. Math. Anal. Appl. 337, No. 2, 1457--1464 (2008; Zbl 1137.47043)].

54H25Fixed-point and coincidence theorems in topological spaces
41A50Best approximation, Chebyshev systems
47H10Fixed-point theorems for nonlinear operators on topological linear spaces
Full Text: DOI
[1] Suzuki, T.: Fixed point theorems and convergence theorems for som generalized nonexpansive mappings, J. math. Anal. appl. 340, 1088-1095 (2008) · Zbl 1140.47041 · doi:10.1016/j.jmaa.2007.09.023
[2] Bridson, M.; Haefliger, A.: Metric spaces of non-positive curvature, (1999) · Zbl 0988.53001
[3] Dhompongsa, S.; Kirk, W. A.; Sims, B.: Fixed point of uniformly Lipschitzian mappings, Nonlinear anal. 65, 762-772 (2006) · Zbl 1105.47050 · doi:10.1016/j.na.2005.09.044
[4] Kirk, W. A.; Panyanak, B.: A concept of convergence in geodesic spaces, Nonlinear anal. 68, 3689-3696 (2008) · Zbl 1145.54041 · doi:10.1016/j.na.2007.04.011
[5] Goebel, K.; Kirk, W. A.: Iteration processes for nonexpansive mappings, Contemp. math. 21, 115-123 (1983) · Zbl 0525.47040
[6] Dhompongsa, S.; Kirk, W. A.; Panyanak, B.: Non-expansive set-valued mappings in metric and Banach spaces, J. nonlinear convex anal. 8, 35-45 (2007) · Zbl 1120.47043
[7] Choha, P.; Phon-On, A.: A note on fixed point sets in $CAT(0)$ spaces, J. math. Anal. appl. 320, 983-987 (2006) · Zbl 1101.54040 · doi:10.1016/j.jmaa.2005.08.006
[8] Dhompongsa, S.; Fupinwong, W.; Kaewkhao, A.: Common fixed point of nonexpansive semigroup and a convergence theorem for Mann iterations in geodesic metric spaces, Nonlinear anal. 65, 762-772 (2008) · Zbl 1191.47077
[9] Kirk, W. A.: Geodesic geometry and fixed point theory II, , 113-142 (2004) · Zbl 1083.53061
[10] A. Razani, H. Salahifard, Demiclosedness principle for total asymptotically nonexpansive mappings in CAT(0) spaces (submitted for publication) · Zbl 1188.54022
[11] Shahzad, N.: Invariant approximations in $CAT(0)$ spaces, Nonlinear anal. 70, 4338-4340 (2009) · Zbl 1167.47042 · doi:10.1016/j.na.2008.10.002
[12] Shahzad, N.; Markin, J.: Invariant approximations for commuting mappings in $CAT(0)$ and hyperconvex spaces, J. math. Anal. appl. 337, 1457-1464 (2008) · Zbl 1137.47043 · doi:10.1016/j.jmaa.2007.04.041