×

Characteristic classes of Q-manifolds: classification and applications. (English) Zbl 1188.58003

Summary: A \(Q\)-manifold \(M\) is a supermanifold endowed with an odd vector field \(Q\) squaring to zero. The Lie derivative \(LQ\) along \(Q\) makes the algebra of smooth tensor fields on \(M\) into a differential algebra. In this paper, we define and study the invariants of \(Q\)-manifolds called characteristic classes. These take values in the cohomology of the operator \(LQ\) and, given an affine symmetric connection with curvature \(R\), can be represented by universal tensor polynomials in the repeated covariant derivatives of \(Q\) and \(R\) up to some finite order. As usual, the characteristic classes are proved to be independent of the choice of the affine connection used to define them. The main result of the paper is a complete classification of the intrinsic characteristic classes, which, by definition, do not vanish identically on flat \(Q\)-manifolds. As an illustration of the general theory, we interpret some of the intrinsic characteristic classes as anomalies in the BV and BFV-BRST quantization methods of gauge theories. An application to the theory of (singular) foliations is also discussed.

MSC:

58A50 Supermanifolds and graded manifolds
81T70 Quantization in field theory; cohomological methods
57R32 Classifying spaces for foliations; Gelfand-Fuks cohomology

References:

[1] Vaintrob, A. Yu., Lie algebroids and homological vector fields, Uspekhi Matem. Nauk, 52, N2, 161-163 (1997) · Zbl 0955.58017
[2] Alexandrov, M.; Kontsevich, M.; Schwarz, A.; Zaboronsky, O., The geometry of the master equation and topological quantum field theory, Int. J. Mod. Phys., A12, 1405-1430 (1997) · Zbl 1073.81655
[3] Kontsevich, M., Deformation quantization of Poisson manifolds, I, Lett. Math. Phys., 66, 157-216 (2003) · Zbl 1058.53065
[4] Henneaux, M.; Teitelboim, C., Quantization of Gauge Systems (1992), Princeton University Press: Princeton University Press Prinston, NJ · Zbl 0838.53053
[5] Schwarz, A., Semiclassical approximation in Batalin-Vilkovisky formalism, Comm. Math. Phys., 158, 373-396 (1993) · Zbl 0855.58005
[6] Cattaneo, A. S.; Felder, G., Relative formality theorem and quantisation of coisotropic submanifolds, Adv. Math., 208, 521-548 (2007) · Zbl 1106.53060
[7] Kazinski, P. O.; Lyakhovich, S. L.; Sharapov, A. A., Lagrange structure and quantization, J. High Energy Phys., 07, 076 (2005)
[8] Lyakhovich, S. L.; Sharapov, A. A., BRST theory without Hamiltonian and Lagrangian, J. High Energy Phys., 03, 011 (2005)
[9] Lyakhovich, S. L.; Sharapov, A. A., Schwinger-Dyson equation for non-Lagrangian field theory, J. High Energy Phys., 02, 007 (2006)
[10] Schouten, J. A., Ricci Calculus (1954), Springer: Springer Berlin, Göttingen · Zbl 0057.37803
[11] J. Janyska, M. Markl, Combinatorial differential geometry and ideal Bianchi-Ricci identities, Preprint arXiv:math.DG/0809.1158v1.; J. Janyska, M. Markl, Combinatorial differential geometry and ideal Bianchi-Ricci identities, Preprint arXiv:math.DG/0809.1158v1.
[12] Fuks, D. B., Cohomology of Infinite-Dimensional Lie Algebras (1986), Consultants Bureau: Consultants Bureau New York · Zbl 0667.17005
[13] Fuks, D. B., Stable cohomologies of a Lie algebra of formal vector fields with tensor coefficients, Funct. Anal. Appl., 17, N4, 295-301 (1983) · Zbl 0552.17009
[14] Kontsevich, M., Feynman diagrams and low-dimensional topology, (First European Congress of Mathematics (Paris, 1992), vol. II. First European Congress of Mathematics (Paris, 1992), vol. II, Progr. Math., vol. 120 (1994), Birkhäuser: Birkhäuser Basel), 97-121 · Zbl 0872.57001
[15] Kontsevich, M., Formal (non)-commutative symplectic geometry, (The Gelfand Mathematical Seminars, 1990-1992 (1993), Birkhäser Boston: Birkhäser Boston Boston, MA), 173-187 · Zbl 0821.58018
[16] Kontsevich, M., Rozansky-Witten invariants via formal geometry, Comput. Math., 115, 115-127 (1999) · Zbl 0924.57017
[17] D.A. Leites, Theory of Supermanifolds, Petrozavodsk, 1983 (in Russian).; D.A. Leites, Theory of Supermanifolds, Petrozavodsk, 1983 (in Russian). · Zbl 0599.58001
[18] Leites, D. A., Introduction to the theory of supermanifolds, Russian Math. Surveys, 35, N1, 3-57 (1980) · Zbl 0439.58007
[19] Segal, G., Equivariant K-theory, Publ. Math. de l’ I.H.É.S., 34, 129-151 (1968) · Zbl 0199.26202
[20] Weyl, H., The Classical Groups. Their Invariants and Representations (1997), Princeton University Press, Fifteenth printing · Zbl 1024.20501
[21] Feigin, B. L.; Fuks, D. B., Stable cohomology of the algebra \(W_n\) and relations in the algebra \(L_1\), Funct. Anal. Appl., 18, N3, 264-266 (1984) · Zbl 0559.17008
[22] V. Dolotin, A. Morozov, Introduction to non-linear algebra, Preprint arXiv:hep-th/0609022v4.; V. Dolotin, A. Morozov, Introduction to non-linear algebra, Preprint arXiv:hep-th/0609022v4. · Zbl 1134.15001
[23] Markl, M., Natural differential operators and graph complexes, Diff. Geom. Appl., 27, N2, 257-278 (2009) · Zbl 1165.51005
[24] Losik, M. V., On cohomologies of Lie algebras of vector fields with nontrivial coefficients, Funct. Anal. Appl., 6, 289-291 (1972) · Zbl 0284.17007
[25] S.A. Merkulov, PROP profile of deformation quantization and graph complexes with loops and wheels, Preprint arXiv:math.QA/0412257v7.; S.A. Merkulov, PROP profile of deformation quantization and graph complexes with loops and wheels, Preprint arXiv:math.QA/0412257v7.
[26] Markl, M.; Merkulov, S.; Shadrin, S., Wheeled PROPs, graph complexes and the master equation, J. Pure Appl. Algebra, 213, N4, 496-535 (2009) · Zbl 1175.18002
[27] Quillen, D., Superconnections and the Chern character, Topology, 24, N1, 89-95 (1985) · Zbl 0569.58030
[28] A. Kotov, T. Strobl, Characteristic classes associated to Q-bundles, Preprint arXiv:math.DG/0711.4106v1.; A. Kotov, T. Strobl, Characteristic classes associated to Q-bundles, Preprint arXiv:math.DG/0711.4106v1. · Zbl 1311.58002
[29] Lyakhovich, S. L.; Sharapov, A. A., Characteristic classes of gauge systems, Nuclear Phys., B703, 419-453 (2004) · Zbl 1198.81179
[30] Fernandes, R. L., Lie algebroids, holonomy and characteristic classes, Adv. Math., 170, N1, 119-179 (2002) · Zbl 1007.22007
[31] Weinstein, A., The modular automorphism group of a Poisson manifold, J. Geom. Phys., 23, 379-394 (1997) · Zbl 0902.58013
[32] Brylinski, J.-L.; Zuckerman, G., The outer derivation of a complex Poisson manifold, J. Reine Angew. Math., 506, 181-189 (1999) · Zbl 0919.58029
[33] Evens, S.; Lu, J.-H.; Weinstein, A., Transverse measures, the modular class and a cohomology pairing for Lie algebroids, Quart. J. Math. Oxford Ser., 2, 50, 417-436 (1999) · Zbl 0968.58014
[34] Huebschmann, J., Duality for Lie-Rinehart algebras and the modular class, J. Reine Angew. Math., 510, 103-159 (1999) · Zbl 1034.53083
[35] G. Barnich, Classical and quantum aspects of the extended antifield formalism, Preprint arXiv:hep-th/0011120v1.; G. Barnich, Classical and quantum aspects of the extended antifield formalism, Preprint arXiv:hep-th/0011120v1.
[36] Fedosov, B. V., Deformation Quantization and Index Theory (1996), Akademie Verlag: Akademie Verlag Berlin · Zbl 0867.58061
[37] Bertelson, M.; Cahen, M.; Gutt, S., Equivalence of star products, Class. Quant. Grav., 14, A93-A107 (1997) · Zbl 0881.58021
[38] Bering, K., Three natural generalizations of Fedosov quantization, SIGMA, 5, 036 (2009) · Zbl 1162.53323
[39] Bordemann, M., The deformation quantization of certain super-Poisson brackets and BRST cohomology, (Dito, G.; Sternheimer, D., Conférence Moshé Flato 1999, Quantization, Deformation, and Symmetries, Vol. II (2000), Kluwer Acad. Publ), 45-68 · Zbl 1004.53067
[40] Godbillon, C.; Vey, J., Un invariant des feuilletages de codimension un, C. R. Acad. Sci. Paris, 273, 92-95 (1971) · Zbl 0215.24604
[41] Abouqateb, A.; Boucetta, M., The modular class of a regular Poisson manifold and the Reeb class of its symplectic foliation, C. R. Math. Acad. Sci. Paris, 337, 61-66 (2003) · Zbl 1030.53079
[42] Konechny, A.; Schwarz, A., Theory of \((k \oplus l | q)\)-dimensional supermanifolds, Selecta Math. (N.S.), 6, 471-486 (2000) · Zbl 1001.58001
[43] Batchelor, M., The structure of supermanifolds, Trans. AMS, 253, 329-338 (1979) · Zbl 0413.58002
[44] Lyakhovich, S. L.; Mosman, E. A.; Sharapov, A. A., On characteristic classes of \(Q\)-manifolds, Funct. Anal. Appl., 42, N1, 75-77 (2008), Preprint arXiv:math.QA/0612579v2 · Zbl 1164.58002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.