zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Verhulst model with Lévy white noise excitation. (English) Zbl 1188.60028
Summary: The transient dynamics of the Verhulst model perturbed by arbitrary non-Gaussian white noise is investigated. Based on the infinitely divisible distribution of the Lévy process we study the nonlinear relaxation of the population density for three cases of white non-Gaussian noise: (i) shot noise; (ii) noise with a probability density of increments expressed in terms of Gamma function; and (iii) Cauchy stable noise. We obtain exact results for the probability distribution of the population density in all cases, and for Cauchy stable noise the exact expression of the nonlinear relaxation time is derived. Moreover starting from an initial delta function distribution, we find a transition induced by the multiplicative Lévy noise, from a trimodal probability distribution to a bimodal probability distribution in asymptotics. Finally we find a nonmonotonic behavior of the nonlinear relaxation time as a function of the Cauchy stable noise intensity.

MSC:
60H10Stochastic ordinary differential equations
60G51Processes with independent increments; Lévy processes
WorldCat.org
Full Text: DOI
References:
[1] W. Horsthemke, R. Lefever, Noise-Induced Transitions: Theory and Applications in Physics, Chemistry and Biology (Springer-Verlag, Berlin, 1984) · Zbl 0529.60085
[2] M. Eigen, P. Schuster, The Hypercycle: A Principle of Natural Self-Organization (Springer, Berlin, 1979)
[3] A. Morita, J. Chem. Phys. 76, 4191 (1982) · doi:10.1063/1.443496
[4] S. Ciuchi, F. de Pasquale, B. Spagnolo, Phys. Rev. E 47, 3915 (1993) · doi:10.1103/PhysRevE.47.3915
[5] J.H. Mathis, T.R. Kiffe, Stochastic Population Models: A Compartmental Perspective (Springer-Verlag, Berlin, 1984)
[6] M. Eigen, Naturwissenschaften 58, 465 (1971) · doi:10.1007/BF00623322
[7] L. Acedo, Physica A 370, 613 (2006) · doi:10.1016/j.physa.2006.03.064
[8] Bao-Quan Ai, Xian-Ju Wang, Guo-Tao Liu, Liang-Gang Liu, Phys. Rev. E 67, 022903--1 (2003) · doi:10.1103/PhysRevE.67.022903
[9] G. DeRise, J.A. Adam, J. Phys. A: Math. Gen. 23, L727S (1990) · Zbl 0709.60547 · doi:10.1088/0305-4470/23/14/007
[10] S. Ciuchi, F. de Pasquale, B. Spagnolo, Phys. Rev. E 54, 706 (1996) · doi:10.1103/PhysRevE.54.706
[11] K.J. McNeil, D.F. Walls, J. Stat. Phys. 10, 439 (1974) · doi:10.1007/BF01020400
[12] H. Ogata, Phys. Rev. A 28, 2296 (1983) · doi:10.1103/PhysRevA.28.2296
[13] F. Schlögl, Z. Phys. 253, 147 (1972) · doi:10.1007/BF01379769
[14] S. Chaturvedi, C.W. Gardiner, D.F. Walls, Phys. Lett. A 57, 404 (1976) · doi:10.1016/0375-9601(76)90104-3
[15] C.W. Gardiner, S. Chaturvedi, J. Stat. Phys. 17, 429 (1977) · Zbl 1255.60112 · doi:10.1007/BF01014349
[16] V. Bouché, J. Phys. A: Math. Gen. 15, 1841 (1982) · doi:10.1088/0305-4470/15/6/024
[17] H.K. Leung, J. Chem. Phys. 86, 6847 (1987) · doi:10.1063/1.452383
[18] A.K. Das, Can. J. Phys. 61, 1046 (1983)
[19] R. Herman, E.W. Montroll, Proc. Natl. Acad. Sci. USA 69, 3019 (1972) · doi:10.1073/pnas.69.10.3019
[20] E.W. Montroll, Proc. Natl. Acad. Sci. USA 75, 4633 (1978) · Zbl 0422.92027 · doi:10.1073/pnas.75.10.4633
[21] H.K. Leung, Phys. Rev. A 37, 1341 (1988) · doi:10.1103/PhysRevA.37.1341
[22] P.J. Jackson, C.J. Lambert, R. Mannella, P. Martano, P.V.E. McClintock, N.G. Stocks, Phys. Rev. A 40, 2875 (1989) · doi:10.1103/PhysRevA.40.2875
[23] K. Binder, Phys. Rev. B 8, 3423 (1973) · doi:10.1103/PhysRevB.8.3423
[24] J. Golec, S. Sathananthan, Math. Comput. Modell. 38, 585 (2003) · Zbl 1052.34064 · doi:10.1016/S0895-7177(03)90029-X
[25] R. Mannella, C.J. Lambert, N.G. Stocks, P.V.E. McClintock, Phys. Rev. A 41, 3016 (1990) · doi:10.1103/PhysRevA.41.3016
[26] H. Calisto, M. Bologna, Phys. Rev. E 75, 050103--1(R) (2007) · doi:10.1103/PhysRevE.75.050103
[27] M. Suzuki, K. Kaneko, S. Takesue, Prog. Theor. Phys. 67, 1756 (1982) · Zbl 1097.82548 · doi:10.1143/PTP.67.1756
[28] M. Suzuki, S. Takesue, F. Sasagawa, Prog. Theor. Phys. 68, 98 (1982) · Zbl 1097.82549 · doi:10.1143/PTP.68.98
[29] L. Brenig, N. Banai, Physica D 5, 208 (1982) · Zbl 1194.60044 · doi:10.1016/0167-2789(82)90018-5
[30] J. Makino, A. Morita, Progr. Theor. Phys. 73, 1268 (1985) · doi:10.1143/PTP.73.1264
[31] A. Morita, J. Makino, Phys. Rev. A 34, 1595 (1986) · doi:10.1103/PhysRevA.34.1595
[32] A.A. Dubkov, B. Spagnolo, Fluct. Noise Lett. 5, L267 (2005) · doi:10.1142/S0219477505002641
[33] A.A. Dubkov, B. Spagnolo, V.V. Uchaikin, Intern. J. Bifurcation and Chaos (2008), in press
[34] W. Feller, An Introduction to Probability Theory and its Applications (John Wiley & Sons, Inc., New York, 1971), Vol. 2 · Zbl 0219.60003