zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A geometric construction of iterative formulas of order three. (English) Zbl 1188.65065
Summary: We consider a geometric construction for improving the order of convergence of iterative formulas of order two. Using this approach, new third-order modifications of Newton’s method are derived. A comparison with other existing methods is given.

65H05Single nonlinear equations (numerical methods)
Full Text: DOI
[1] Ostrowski, A. M.: Solution of equations in Euclidean and Banach space, (1973) · Zbl 0304.65002
[2] Potra, F. A.; Pták, V.: Nondiscrete induction and iterative processes, Research notes in mathematics 103 (1984) · Zbl 0549.41001
[3] Abbasbandy, S.: Improving Newton--raphson method for nonlinear equations by modified Adomian decomposition method, Appl. math. Comput. 145, 887-893 (2003) · Zbl 1032.65048 · doi:10.1016/S0096-3003(03)00282-0
[4] Chun, C.: Iterative methods improving Newton’s method by the decompositionm method, Comput. math. Appl. 50, 1559-1568 (2005) · Zbl 1086.65048 · doi:10.1016/j.camwa.2005.08.022
[5] He, J. H.: Newton-like iteration methods for solving algebraic equations, Commun. nonlinear sci. Numer. simul. 3, No. 2, 106-109 (1998) · Zbl 0918.65034 · doi:10.1016/S1007-5704(98)90073-9
[6] Abbasbandy, S.: Modified homotopy perturbation method for nonlinear equations and comparison with Adomian decomposition method, Appl. math. Comput. 172, 431-438 (2006) · Zbl 1088.65043 · doi:10.1016/j.amc.2005.02.015
[7] Chun, C.: Construction of Newton-like iteration methods for solving nonlinear equations, Numer. math. 104, No. 3, 297-315 (2006) · Zbl 1126.65042 · doi:10.1007/s00211-006-0025-2
[8] Weerakoon, S.; Fernando, G. I.: A variant of Newton’s method with accelerated third-order convergence, Appl. math. Lett. 17, 87-93 (2000) · Zbl 0973.65037 · doi:10.1016/S0893-9659(00)00100-2
[9] Frontini, M.; Sormani, E.: Some variants of Newton’s method with third-order convergence, J. comput. Appl. math. 140, 419-426 (2003) · Zbl 1037.65051 · doi:10.1016/S0096-3003(02)00238-2
[10] Homeier, H. H. H.: On Newton-type methods with cubic convergence, J. comput. Appl. math. 176, 425-432 (2005) · Zbl 1063.65037 · doi:10.1016/j.cam.2004.07.027
[11] Özban, A. Y.: Some new variants of Newton’s method, Appl. math. Lett. 17, 677-682 (2004) · Zbl 1065.65067
[12] Kou, J.; Li, Y.; Wang, X.: A modification of Newton method with third-order convergence, Appl. math. Comput. 181, 1106-1111 (2006) · Zbl 1172.65021 · doi:10.1016/j.amc.2006.01.076
[13] Traub, J. F.: Iterative methods for the solution of equations, (1977) · Zbl 0383.68041
[14] Dehghan, M.; Hajarian, M.: One some cubic iterative formulae without derivatives for solving nonlinear equations, Commun. numer. Methods eng. (2009) · Zbl 1227.65042
[15] Pavaloiu, I.; Catinas, E.: On a Steffensen--Hermite method of order three, Appl. math. Comput. (2009)
[16] Wu, X. -Y.: A new continuation Newton-like method and its deformation, Appl. math. Comput. 112, 75-78 (2000) · Zbl 1023.65043 · doi:10.1016/S0096-3003(99)00049-1
[17] Mamta, V.; Kanwar, V. K.; Kukreja, S.; Singh: On a class of quadratically convergent iteration formulae, Appl. math. Comput. 166, No. 3, 633-637 (2006) · Zbl 1078.65036 · doi:10.1016/j.amc.2004.07.008