zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A class of three-point root-solvers of optimal order of convergence. (English) Zbl 1188.65068
Summary: The construction of a class of three-point methods for solving nonlinear equations of the eighth order is presented. These methods are developed by combining fourth order methods from the class of optimal two-point methods and a modified Newton’s method in the third step, obtained by a suitable approximation of the first derivative based on interpolation by a nonlinear fraction. It is proved that the new three-step methods reach the eighth order of convergence using only four function evaluations, which supports the conjecture of {\it H. T. Kung} and {\it J. F. Traub} [J. Assoc. Comput. Mach. 21, 643--651 (1974; Zbl 0289.65023)] on the optimal order of convergence. Numerical examples for the selected special cases of two-step methods are given to demonstrate very fast convergence and a high computational efficiency of the proposed multipoint methods. Some computational aspects and the comparison with existing methods are also included.

65H05Single nonlinear equations (numerical methods)
65Y20Complexity and performance of numerical algorithms
Full Text: DOI
[1] Amat, S.; Busquier, S.; Plaza, S.: Review of some iterative root-finding methods from a dynamical point of view, Sci. ser. A math. 10, 3-35 (2004) · Zbl 1137.37316
[2] Bi, W.; Ren, H.; Wu, Q.: A new family of eight-order iterative methods for solving nonlinear equations, Appl. math. Comput. 214, 236-245 (2009) · Zbl 1173.65030 · doi:10.1016/j.amc.2009.03.077
[3] Chun, C.: A family of composite fourth-order iterative methods for solving nonlinear equations, Appl. math. Comput. 187, 951-956 (2007) · Zbl 1116.65054 · doi:10.1016/j.amc.2006.09.009
[4] Chun, C.: Some fourth-order iterative methods for solving nonlinear equations, Appl. math. Comput. 195, 454-459 (2008) · Zbl 1173.65031 · doi:10.1016/j.amc.2007.04.105
[5] Chun, C.; Ham, Y.: A one-parameter fourth-order family of iterative methods for nonlinear equations, Appl. math. Comput. 189, 610-614 (2007) · Zbl 1122.65330 · doi:10.1016/j.amc.2006.11.113
[6] Jarratt, P.: Some fourth order multipoint methods for solving equations, Math. comput. 20, 434-437 (1966) · Zbl 0229.65049 · doi:10.2307/2003602
[7] King, R.: A family of fourth order methods for nonlinear equations, SIAM J. Numer. anal. 10, 876-879 (1973) · Zbl 0266.65040 · doi:10.1137/0710072
[8] Kou, J.; Li, Y.; Wang, X.: A composite fourth-order iterative method, Appl. math. Comput. 184, 471-475 (2007) · Zbl 1114.65045 · doi:10.1016/j.amc.2006.05.181
[9] Kung, H. T.; Traub, J. F.: Optimal order of one-point and multipoint iteration, J. ACM 21, 643-651 (1974) · Zbl 0289.65023 · doi:10.1145/321850.321860
[10] Maheshwari, A. K.: A fourth-order iterative method for solving nonlinear equations, Appl. math. Comput. 211, 383-391 (2009) · Zbl 1162.65346 · doi:10.1016/j.amc.2009.01.047
[11] Ostrowski, A. M.: Solution of equations and systems of equations, (1960) · Zbl 0115.11201
[12] Petković, M. S.; Petković, L. D.: A one parameter square root family of two-step root-finders, Appl. math. Comput. 188, 339-344 (2007) · Zbl 1118.65042 · doi:10.1016/j.amc.2006.09.122
[13] Petković, M. S.: On a general class of multipoint root-finding methods of high computational efficiency, SIAM J. Numer. anal. 47, 4402-4414 (2010) · Zbl 1209.65053 · doi:10.1137/090758763
[14] Traub, J. F.: Iterative methods for the solution of equations, (1964) · Zbl 0121.11204
[15] Weerakoon, S.; Fernando, T. G. I.: A variant of Newton’s method with accelerated third-order convergence, Appl. math. Lett. 13, 87-93 (2000) · Zbl 0973.65037 · doi:10.1016/S0893-9659(00)00100-2
[16] Yun, B. I.: A non-iterative method for solving non-linear equations, Appl. math. Comput. 198, 691-699 (2008) · Zbl 1138.65035 · doi:10.1016/j.amc.2007.09.006