zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Boundary integral solutions of coupled Stokes and Darcy flows. (English) Zbl 1188.76232
This work presents an accurate computational method based on the boundary integral formulation for solving boundary value problems for Stokes and Darcy flows. The method is applied to problems where the equations are coupled across the interface through appropriate boundary conditions. First, the adopted technique reformulates singular integrals of the boundary integral formulation for the fluid flows as single and double layer potentials. Then the layer potentials are regularized and discretized using standard quadratures. At the final step, the leading term in the regularization error is eliminated in order to increase the order of accuracy. Various presented test cases show that the results are consistent with theoretical predictions. In the first example, the authors compute the Stokes flow in a channel driven by a uniform pressure gradient. Assuming the porous lower boundary and imposing the Beavers-Joseph-Saffman slip boundary condition, the authors obtain a velocity profile that is non-zero on the boundary. Using corrected expressions, the slip velocity can be calculated more accurately than with uncorrected expressions. The error as a function of regularization parameter $\delta$ reduces in magnitude, and the convergence rate increases from $O(\delta)$ to $O(\delta^{2})$. Then the authors test the Darcy solution by prescribing an exact velocity on a circle. The kernels in the Darcy velocity have singularities of higher order, and the authors indicate numerical errors in the uncorrected case as large as 20% in velocity and 70% in pressure. The corrections reduce the error by high factors of 100--1000, and the accuracy increases by one order. The solved equations are steady-state, but once the fluid velocity is known, the position of the Lagrangian particles can be updated in time, thus extending the method to time-dependent problems.

76M15Boundary element methods (fluid mechanics)
76D07Stokes and related (Oseen, etc.) flows
76S05Flows in porous media; filtration; seepage
Full Text: DOI
[1] Ainley, J.; Durkin, S.; Embid, R.; Boindala, P.; Cortez, R.: The method of images for regularized stokeslets, J. comput. Phys. 227, 4600-4616 (2008) · Zbl 05276040
[2] Alvarez, P. J.; Illman, W. A.: Bioremediation and natural attenuation: process fundamentals and mathematical models, (2006)
[3] Beale, J. T.: A convergent boundary integral method for three-dimensional water waves, Math. comp. 70, 977-1029 (2001) · Zbl 0980.76053 · doi:10.1090/S0025-5718-00-01218-7
[4] Beale, J. T.: A grid-based boundary integral method for elliptic problems in three dimensions, SIAM J. Numer. anal. 42, 599-620 (2001) · Zbl 1159.65368 · doi:10.1137/S0036142903420959
[5] Beale, J. T.; Lai, M. -C.: A method for computing nearly singular integrals, SIAM J. Numer. anal. 38, 1902-1925 (2001) · Zbl 0988.65025 · doi:10.1137/S0036142999362845
[6] Beale, J. T.; Layton, A. T.: On the accuracy of finite difference methods for elliptic problems with interfaces, Commun. appl. Math. comput. Sci. 1, 91-119 (2006) · Zbl 1153.35319 · doi:10.2140/camcos.2006.1.91 · http://pjm.math.berkeley.edu/camcos/2006/1-1/p05.xhtml
[7] Bear, J.; Verruijt, A.: Modeling groundwater flow and pollution, (1987)
[8] Beavers, G. S.; Joseph, D. D.: Boundary conditions at a naturally permeable wall, J. fluid mech. 30, 197-207 (1967)
[9] Broday, D. M.: Motion of nanobeads proximate to plasma membranes during single particle tracking, Bull. math. Biol. 64, 531-563 (2002)
[10] Burman, E.; Hansbo, P.: A unified stabilized method for Stokes and Darcy’s equations, J. comput. Appl. math. 198, 35-51 (2007) · Zbl 1101.76032 · doi:10.1016/j.cam.2005.11.022
[11] Chwang, A. T.; Wu, T. Y. -T.: Hydromechanics of low-Reynolds-number flow, part 2, singularity method for Stokes flows, J. fluid mech. 67, 787-815 (1975) · Zbl 0309.76016 · doi:10.1017/S0022112075000614
[12] Cisneros, L.; Cortez, R.; Dombrowski, C.; Goldstein, R.; Kessler, J.: Fluid dynamics of self-propelled micro-organisms, from individuals to concentrated populations, Exp. fluids 43, 737-753 (2007)
[13] Colton, D.; Kress, R.: Inverse acoustic and electromagnetic scattering theory, (1998) · Zbl 0893.35138
[14] Cortez, R.: The method of regularized stokeslets, SIAM J. Sci. comput. 23, No. 4, 1204-1225 (2001) · Zbl 1064.76080 · doi:10.1137/S106482750038146X
[15] Cortez, R.; Fauci, L.; Medovikov, A.: The method of regularized stokeslets in three dimensions: analysis, validation, and application to helical swimming, Phys. fluids 17, 1-14 (2005) · Zbl 1187.76105 · doi:10.1063/1.1830486
[16] Daripa, P.; Palaniappan, D.: Singularity induced exterior and interior Stokes flows, Phys. fluids 13, No. 11, 3134-3154 (2001) · Zbl 1184.76121 · doi:10.1063/1.1407269
[17] Discacciati, M.; Miglio, E.; Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows, Appl. numer. Math. 43, 57-74 (2002) · Zbl 1023.76048 · doi:10.1016/S0168-9274(02)00125-3
[18] Elasmi, L.; Feuillebois, F.: Green function for a Stokes flow near a porous slab, Z. angew. Math. mech. 81, No. 11, 743-752 (2001) · Zbl 1015.76017 · doi:10.1002/1521-4001(200111)81:11<743::AID-ZAMM743>3.0.CO;2-4
[19] Flores, H.; Lobaton, E.; Méndez-Diez, S.; Tlupova, S.; Cortez, R.: A study of bacterial flagellar bundling, Bull. math. Biol. 67, 137-168 (2005)
[20] J. Galvis, M. Sarkis, Balancing domain decomposition methods for mortar coupling Stokes -- Darcy systems, Lecture notes in Computational Science and Engineering, 2006. · Zbl 05896273
[21] Guest, J. K.; Prevost, J. H.: Topology optimization of creeping fluid flows using a Darcy -- Stokes finite element, Int. J. Numer. meth. Eng. 66, 461-484 (2006) · Zbl 1110.76310 · doi:10.1002/nme.1560
[22] Hanspal, N.; Waghode, A.; Nassehi, V.; Wakeman, R.: Numerical analysis of coupled Stokes/Darcy flows in industrial filtrations, Trans. porous med. 64, 73-101 (2006) · Zbl 1309.76195
[23] Higdon, J. J. L.: The generation of feeding currents by flagellar motions, J. fluid mech. 94, 305-330 (1979) · Zbl 0423.76100 · doi:10.1017/S002211207900104X
[24] Higdon, J. J. L.: A hydrodynamic analysis of flagellar propulsion, J. fluid mech. 90, 685-711 (1979) · Zbl 0412.76097 · doi:10.1017/S0022112079002482
[25] Jager, W.; Mikelić, A.: On the interface boundary condition of Beavers, Joseph, and Saffman, SIAM J. Appl. math. 60, 1111-1127 (2000) · Zbl 0969.76088 · doi:10.1137/S003613999833678X
[26] Keller, J. B.; Rubinow, S. I.: Slender-body theory for slow viscous flow, J. fluid mech. 75, 705-714 (1976) · Zbl 0377.76036 · doi:10.1017/S0022112076000475
[27] Kress, R.: Linear integral equations, (1999) · Zbl 0920.45001
[28] Layton, W. J.; Schieweck, F.; Yotov, I.: Coupling fluid flow with porous media flow, SIAM J. Numer. anal. 40, No. 6, 2195-2218 (2003) · Zbl 1037.76014 · doi:10.1137/S0036142901392766
[29] Lighthill, J.: Mathematical biofluid dynamics, (1975) · Zbl 0312.76076
[30] Lighthill, J.: Flagellar hydrodynamics, SIAM rev. 18, 161-230 (1976) · Zbl 0366.76099 · doi:10.1137/1018040
[31] Lighthill, J.: Helical distributions of stokeslets, J. eng. Math. 30, 35-78 (1996) · Zbl 0883.76099 · doi:10.1007/BF00118823
[32] Liron, N.; Mochon, S.: Stokes flow for a stokeslet between two parallel flat plates, J. eng. Math. 10, 287-303 (1976) · Zbl 0377.76030 · doi:10.1007/BF01535565
[33] Mardal, K. A.; Tai, X. -C.; Winther, R.: A robust finite element method for Darcy -- Stokes flow, SIAM J. Numer. anal. 40, 1605-1631 (2002) · Zbl 1037.65120 · doi:10.1137/S0036142901383910
[34] Masud, A.; Hughes, T. J. R.: A stabilized mixed finite element method for Darcy flow, Comput. meth. Appl. mech. Eng. 191, 4341-4370 (2002) · Zbl 1015.76047 · doi:10.1016/S0045-7825(02)00371-7
[35] Mayo, A.: The fast solution of Poisson’s and the biharmonic equations on irregular regions, SIAM J. Numer. anal. 21, No. 2, 285-299 (1984) · Zbl 1131.65303 · doi:10.1137/0721021
[36] Phillips, O. M.: Flow and reactions in permeable rocks, (1991)
[37] Pozrikidis, C.: Boundary integral and singularity methods for linearized viscous flow, (1992) · Zbl 0772.76005
[38] Pozrikidis, C.: On the transient motion of ordered suspensions of liquid drops, J. fluid mech. 246, 301-320 (1993) · Zbl 0825.76859 · doi:10.1017/S0022112093000138
[39] Pozrikidis, C.: Introduction to theoretical and computational fluid dynamics, (1997) · Zbl 0886.76002
[40] Pozrikidis, C.; Farrow, D. A.: A model for fluid flow in solid tumors, Ann. biomed. Eng. 31, 181-194 (2003)
[41] Sekhar, G. P. Raja; Amaranath, T.: Stokes flow inside a porous spherical shell, Z. angew. Math. phys. 51, 481-490 (2000) · Zbl 0959.76085 · doi:10.1007/s000330050009
[42] Saffman, P. G.: On the boundary condition at the surface of a porous medium, Stud. appl. Math. L 2, 93-101 (1971) · Zbl 0271.76080
[43] Shatz, L. F.: Singularity method for oblate and prolate spheroids in Stokes and linearized oscillatory flow, Phys. fluids 16, No. 3, 664-677 (2004) · Zbl 1186.76472 · doi:10.1063/1.1643402
[44] S. Tlupova, Improved Accuracy of Numerical Solutions of Coupled Stokes and Darcy Flows Based on Boundary Integrals, Ph.D. Thesis, Tulane University, 2007.
[45] Truskey, G. A.; Yuan, F.; Katz, D. F.: Transport phenomena in biological systems, (2003)