zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Neutral bound states in kink-like theories. (English) Zbl 1188.81146
Summary: We present an elementary derivation of the semi-classical spectrum of neutral particles in a field theory with kink excitations. In the non-integrable cases, we show that each vacuum state cannot generically support more than two stable particles, since all other neutral excitations are resonances, which will eventually decay. A phase space estimate of these decay rates is also given. This shows that there may be a window of values of the coupling constant where a particle with higher mass is more stable than the one with lower mass. We also discuss the crossing symmetry properties of the semiclassical form factors and the possibility of extracting the elastic part of the kink $S$-matrix below their inelastic threshold. We present the analysis of theories with symmetric and asymmetric wells, as well as of those with symmetric or asymmetric kinks. Illustrative examples of such theories are provided, among others, by the tricritical Ising model, the double sine-Gordon model and by a class of potentials recently introduced by Bazeia et al.

81T40Two-dimensional field theories, conformal field theories, etc.
Full Text: DOI
[1] Zamolodchikov, A. B.; Zamolodchikov, Al.B.: Factorized S matrices in two dimensions as the exact solutions of certain relativistic quantum field models. Ann. phys. 120, 253 (1979) · Zbl 0946.81070
[2] Zamolodchikov, A. B.: Integrable field theory from conformal field theory. Adv. stud. Pure math. 19, 641 (1989) · Zbl 0703.17014
[3] Mussardo, G.: Off critical statistical models: factorized scattering theories and bootstrap program. Phys. rep. 218, 215 (1992)
[4] Delfino, G.; Mussardo, G.; Simonetti, P.: Nonintegrable quantum field theories as perturbations of certain integrable models. Nucl. phys. B 473, 469 (1996) · Zbl 0925.81296
[5] Delfino, G.; Mussardo, G.: Nonintegrable aspects of the multifrequency sine-Gordon model. Nucl. phys. B 516, 675 (1998) · Zbl 0921.35148
[6] Controzzi, D.; Mussardo, G.: On the mass spectrum of the two-dimensional $O(3)$ sigma model with theta term. Phys. rev. Lett. 92, 021601 (2004)
[7] Delfino, G.; Grinza, P.; Mussardo, G.: Decay of particles above threshold in the Ising field theory with magnetic field. Nucl. phys. B 737, 291 (2006) · Zbl 1109.82310
[8] Pozsgay, B.; Takacs, G.: Characterization of resonances using finite size effects
[9] Dashen, R. F.; Hasslacher, B.; Neveu, A.: Particle spectrum in model field theories from semiclassical functional integral techniques. Phys. rev. D 11, 3424 (1975)
[10] Goldstone, J.; Jackiw, R.: Quantization of nonlinear waves. Phys. rev. D 11, 1486 (1975)
[11] Jackiw, R.; Woo, G.: Semiclassical scattering of quantized nonlinear waves. Phys. rev. D 12, 1643 (1975)
[12] Mussardo, G.; Riva, V.; Sotkov, G.: Finite volume form-factors in semiclassical approximation. Nucl. phys. B 670, 464 (2003) · Zbl 1058.81735
[13] Mussardo, G.; Riva, V.; Sotkov, G.: Semiclassical energy levels of sine-Gordon model on a strip with Dirichlet boundary conditions. Nucl. phys. B 705, 548 (2005) · Zbl 1119.81346
[14] Mussardo, G.; Riva, V.; Sotkov, G.; Delfino, G.: Kink scaling functions in 2D non-integrable quantum field theories. Nucl. phys. B 736, 259 (2006) · Zbl 1109.81315
[15] Mussardo, G.; Riva, V.; Sotkov, G.: Semiclassical particle spectrum of double sine-Gordon model. Nucl. phys. B 687, 189 (2004) · Zbl 1149.81334
[16] Bajnok, Z.; Palla, L.; Takacs, G.; Wagner, F.: Nonperturbative study of the two frequency sine-Gordon model. Nucl. phys. B 601, 503 (2001) · Zbl 1076.81541
[17] Takacs, G.; Wagner, F.: Double sine-Gordon model revisited. Nucl. phys. B 741, 353 (2006)
[18] Rajaraman, R.: Solitons and instantons. (1982) · Zbl 0493.35074
[19] Smirnov, F. A.: Form factors in completely integrable models of quantum field theory. Advanced series in mathematical physics 14 (1992) · Zbl 0788.46077
[20] Koberle, R.; Swieca, J. A.: Factorizable $Z(N)$ models. Phys. lett. B 86, 209 (1979)
[21] Lassig, M.; Mussardo, G.; Cardy, J. L.: The scaling region of the tricritical Ising model in two dimensions. Nucl. phys. B 348, 591 (1991)
[22] Colomo, F.; Koubek, A.; Mussardo, G.: The S-matrix of the sub-leading magnetic deformation of the tricritical Ising model in two dimensions. Int. J. Mod. phys. A 7, 5281 (1992)
[23] Korepin, V. E.; Faddev, L. D.: Teor. mat. Fiz.. 25, 3424 (1975)
[24] Faddev, L. D.; Korepin, V. E.: Phys. rep.. 42, 1 (1976)
[25] Weisz, P. H.: Nucl. phys. B. 122, 1 (1977)
[26] Campbell, D. K.; Peyrard, M.; Sodano, P.: Kink -- antikink interactions in the double sine-Gordon equation. Physica D 19, 165 (1986)
[27] Callan, C. G.; Gross, D. J.: Quantum perturbation theory of solitons. Nucl. phys. B 93, 29 (1975)
[28] Coron, J. M.: C. R. Acad. sci. Ser. A. 99, 127 (1982)
[29] Segur, H.; Kruskal, M. D.: Non-existence of small-amplitude breather solution in $\Phi 4$ theory. Phys. rev. Lett. 58, 747 (1987)
[30] Campbell, D. K.; Peyrard, M.: Chaos and order in nonintegrable model field theories. Chaos, soviet -- American perspectives on nonlinear science (1990)
[31] Bazeia, D.; Leon, M. A. Gonzalez; Losano, L.; Guilarte, J. Mateos: Deformed defects for scalar fields with polynomial interaction. Phys. rev. D 73, 105008 (2006)