zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Reconstruction-based contribution for process monitoring. (English) Zbl 1188.90074
Summary: This paper presents a new method to perform fault diagnosis for data-correlation based process monitoring. As an alternative to the traditional contribution plot method, a reconstruction-based contribution for fault diagnosis is proposed based on monitored indices, SPE, $ T^{2}$ and a combined index $\varphi $. Analysis of the diagnosability of the traditional contributions and the reconstruction-based contributions is performed. The lack of diagnosability of traditional contributions is analyzed for the case of single sensor faults with large fault magnitudes, whereas for the same case the proposed reconstruction-based contributions guarantee correct diagnosis. Monte Carlo simulation results are provided for the case of modest fault magnitudes by randomly assigning fault sensors and fault magnitudes.

90B25Reliability, availability, maintenance, inspection, etc. (optimization)
Full Text: DOI
[1] Box, G. E. P.: Some theorems on quadratic forms applied in the study of analysis of variance problems I effect of inequality of variance in the one-way classification, Annals of mathematics and statistics 25, 290-302 (1954) · Zbl 0055.37305 · doi:10.1214/aoms/1177728786
[2] Cherry, G.; Qin, S. J.: Multiblock principal component analysis based on a combined index for semiconductor fault detection and diagnosis, IEEE transactions on semiconductor manufacturing 19, No. 2, 159-172 (2006)
[3] Chiang, L. H.; Russell, E. L.; Braatz, R. D.: Fault detection and diagnosis in industrial systems, (2001) · Zbl 0982.93005
[4] Dunia, R.; Qin, S. J.: Subspace approach to multidimensional fault identification and reconstruction, Aiche journal 44, 1813-1831 (1998)
[5] Dunia, R.; Qin, S. J.; Edgar, T. F.; Mcavoy, T. J.: Identification of faulty sensors using principal component analysis, Aiche journal 42, 2797-2812 (1996)
[6] Gertler, J.: Fault detection and diagnosis in engineering systems, (1998)
[7] Gertler, J.; Cao, J.: PCA-based fault diagnosis in the presence of control and dynamics, Aiche journal 50, No. 2, 388-402 (2004)
[8] Gertler, J.; Li, W.; Huang, Y.; Mcavoy, T. J.: Isolation-enhanced principal component analysis, Aiche journal 45, No. 2, 323-334 (1999)
[9] Isermann, R.: Process fault detection based on modeling and estimation methods--A survey, Automatica 20, No. 4, 387-404 (1984) · Zbl 0539.90037 · doi:10.1016/0005-1098(84)90098-0
[10] Kano, M.; Nagao, K.; Hasebe, S.; Hashimoto, I.; Ohno, H.: Statistical process monitoring based on dissimilarity of process data, Aiche journal 48, No. 6, 1231-1240 (2002)
[11] Miller, P., Swanson, R.E., & Heckler, C.F. (1993). Contribution plots: The missing link in multivariate quality control. In Fall Conf. of the ASQC and ASA. Milwaukee, WI · Zbl 0925.93034
[12] Nomikos, P. (1997). Statistical monitoring of batch processes. In Preprints of Joint Statistical Meeting
[13] Nomikos, P.; Macgregor, J. F.: Multivariate SPC charts for monitoring batch processes, Technometrics 37, No. 1, 41-59 (1995) · Zbl 0825.62740 · doi:10.2307/1269152
[14] Qin, S. J.: Statistical process monitoring: basics and beyond, Journal of chemometrics 17, 480-502 (2003)
[15] Qin, S. J.; Valle-Cervantes, S.; Piovoso, M.: On unifying multi-block analysis with applications to decentralized process monitoring, Journal of chemometrics 15, 715-742 (2001)
[16] Qin, S. J.; Li, W.: Detection, identification and reconstruction of faulty sensors with maximized sensitivity, Aiche journal 45, 1963-1976 (1999)
[17] Qin, S. J.; Li, W.: Detection and identification of faulty sensors in dynamic processes, Aiche journal 47, No. 7, 1581-1593 (2001)
[18] Raich, A.; Cinar, A.: Statistical process monitoring and disturbance diagnosis in multivariate continuous processes, Aiche journal 42, 995-1009 (1996)
[19] Singhal, A.; Seborg, D.: Pattern matching in multivariate time series databases using a moving-window approach, Industrial & engineering chemistry research 41, 3822-3838 (2002)
[20] Singhal, A.; Seborg, D.: Evaluation of a pattern matching method for the tennessee eastman challenge process, Journal of process control 16, 601-613 (2006)
[21] Westerhuis, J. A.; Gurden, S. P.; Smilde, A. K.: Generalized contribution plots in multivariate statistical process monitoring, Chemometrics and intelligent laboratory systems 51, 95-114 (2000)
[22] Willsky, A. S.: A survey of design methods for failure detection in dynamic systems, Automatica 12, 601-611 (1976) · Zbl 0345.93067 · doi:10.1016/0005-1098(76)90041-8
[23] Wise, B. M.; Gallagher, N. B.; Bro, R.; Shaver, J. M.; Winding, W.; Koch, R. S.: PLS toolbox user manual, (2006)
[24] Wise, B. M.; Gallagher, N. B.: The process chemometrics approach to process monitoring and fault detection, Journal of process control 6, 329-348 (1996)
[25] Yoon, S.; Macgregor, J. F.: Statistical and causal model-based approaches to fault detection and isolation, Aiche journal 46, 1813-1824 (2000)
[26] Yoon, S.; Macgregor, J. F.: Fault diagnosis with multivariate statistical models, part I: Using steady state fault signatures, Journal of process control 11, 387-400 (2001)
[27] Yue, H.; Qin, S. J.: Reconstruction based fault identification using a combined index, Industrial & engineering chemistry research 40, 4403-4414 (2001)