Mesiarová, A. \(k\)-\(l_p\)-Lipschitz t-norms. (English) Zbl 1189.03058 Int. J. Approx. Reasoning 46, No. 3, 596-604 (2007). Summary: \(k\)-\(l_p\)-Lipschitz t-norms are shown to be ordinal sums of \(k\)-\(l_p\)-Lipschitz Archimedean t-norms. Additive generators of \(k\)-\(l_p\)-Lipschitz t-norms are characterized by means of \(k\)-\(p\)-convexity. Several necessary and sufficient conditions for a function to be a \(k\)-\(p\)-convex additive generator are also given. Cited in 8 Documents MSC: 03E72 Theory of fuzzy sets, etc. Keywords:additive generator; \(l_p\) norm; Lipschitz property; triangular norm PDF BibTeX XML Cite \textit{A. Mesiarová}, Int. J. Approx. Reasoning 46, No. 3, 596--604 (2007; Zbl 1189.03058) Full Text: DOI References: [1] Alsina, C.; Frank, M.J.; Schweizer, B., Problems on associative functions, Aequationes math., 66, 128-140, (2003) · Zbl 1077.39021 [2] T. Calvo, R. Mesiar, Stability of aggregation operators, in: Proc. EUSFLAT’2001, Leicester, 2001, pp. 475-478. [3] Klement, E.P.; Mesiar, R.; Pap, E., Triangular norms, Trends in logic, studia logica library, vol. 8, (2000), Kluwer Acad. Publishers Dordrecht · Zbl 0972.03002 [4] Mesiarová, A., A note on two open problems of alsina, Frank and schweizer, Aequationes math., 72, 1-2, 41-46, (2006) · Zbl 1101.39011 [5] Mesiarová, A., Lipschitz continuity of triangular norms, (), 309-321 [6] Moynihan, R., On τT semigroups of probability distribution functions II, Aequationes math., 17, 19-40, (1978) · Zbl 0386.22005 [7] Schweizer, B.; Sklar, A., Associative functions and abstract semigroups, Publ. math. debrecen, 10, 69-81, (1963) · Zbl 0119.14001 [8] Schweizer, B.; Sklar, A., Probabilistic metric spaces, (1983), North-Holland New York · Zbl 0546.60010 [9] Y.-H. Shju, Absolute continuity in the τT-operations, in: Ph.D. Thesis, Illinois Institute of Technology, Chicago, 1984. [10] Yager, R.R., On global requirements for implication operators in fuzzy modus ponens, Fuzzy sets syst., 106, 3-10, (1999) · Zbl 0931.68117 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.