zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exclusive disjunctive soft sets. (English) Zbl 1189.03062
Summary: Soft sets theory, initiated by Molodtsov, is an emerging tool to deal with uncertain problems and has been studied by scholars in both theory and practice. This paper proposes the notion of exclusive disjunctive soft sets and studies some of its operations, such as, restricted/relaxed AND operations, dependency between exclusive disjunctive soft sets and bijective soft sets, exclusive disjunctive soft decision systems, reduction of exclusive disjunctive soft decision systems, core of exclusive disjunctive soft decision systems, decision rules in exclusive disjunctive decision soft sets. Moreover, this study gives an application of exclusive disjunctive soft sets, which shows that it can be applied to attribute reduction of incomplete information system.

03E72Fuzzy set theory
Full Text: DOI
[1] Molodtsov, D.: Soft set theory--first results, Comput. math. Appl. 37, No. 4/5, 19-31 (1999) · Zbl 0936.03049 · doi:10.1016/S0898-1221(99)00056-5
[2] Maji, P. K.; Biswas, R.; Roy, A. R.: Soft set theory, Comput. math. Appl. 45, 555-562 (2003) · Zbl 1032.03525
[3] Aktaş, H.; Çağman, N.: Soft sets and soft groups, Inform. sci. 177, No. 13, 2726-2735 (2007) · Zbl 1119.03050 · doi:10.1016/j.ins.2006.12.008
[4] Chen, D.; Tsang, E. C. C.; Yeung, D. S.; Wang, X.: The parameterization reduction of soft sets and its applications, Comput. math. Appl. 49, No. 5--6, 757-763 (2005) · Zbl 1074.03510 · doi:10.1016/j.camwa.2004.10.036
[5] Z. Xiao, L. Chen, B. Zhong, S. Ye, Recognition for soft information based on the theory of soft sets. in Services Systems and Services Management, in: Proceedings of ICSSSM ’05, 2005
[6] J.L. Liu, R.X. Yan, Fuzzy soft sets and fuzzy soft groups, in: Chinese Control and Decision Conference, Guilin, China, 2008
[7] Jun, Y. B.; Park, C. H.: Applications of soft sets in ideal theory of BCK/BCI-algebras, Inform. sci. 178, No. 11, 2466-2475 (2008) · Zbl 1184.06014 · doi:10.1016/j.ins.2008.01.017
[8] Feng, F.; Jun, Y. B.; Zhao, X.: Soft semirings, Comput. math. Appl. 56, No. 10, 2621-2628 (2008) · Zbl 1165.16307 · doi:10.1016/j.camwa.2008.05.011
[9] Ali, M. I.; Feng, F.; Liu, X.; Min, W. K.; Shabira, M.: On some new operations in soft set theory, Comput. math. Appl. 57, No. 9, 1547-1553 (2009) · Zbl 1186.03068 · doi:10.1016/j.camwa.2008.11.009
[10] Yang, X.; Lin, T. Y.; Yang, J.; Dongjun, Y. L. A.: Combination of interval-valued fuzzy set and soft set, Comput. math. Appl. 58, 521-527 (2009) · Zbl 1189.03064 · doi:10.1016/j.camwa.2009.04.019
[11] Aygünoglu, A.; Aygün, H.: Introduction to fuzzy soft groups, Comput. math. Appl. (2009) · Zbl 1189.20068
[12] Zou, Y.; Xiao, Z.: Data analysis approaches of soft sets under incomplete information, Knowl.-based syst. 21, No. 8, 941-945 (2008)
[13] Xiao, Z.; Gong, K.; Zou, Y.: A combined forecasting approach based on fuzzy soft sets, J. comput. Appl. math. 228, No. 1, 326-333 (2009) · Zbl 1161.91472 · doi:10.1016/j.cam.2008.09.033
[14] Maji, P. K.; Roy, A. R.: An application of soft sets in a decision making problem, Comput. math. Appl. 44, 1077-1083 (2002) · Zbl 1044.90042 · doi:10.1016/S0898-1221(02)00216-X
[15] Kong, Z.; Gao, L.; Wang, L.; Li, S.: The normal parameter reduction of soft sets and its algorithm, Comput. math. Appl. 56, No. 12, 3029-3037 (2008) · Zbl 1165.90699 · doi:10.1016/j.camwa.2008.07.013
[16] Jun, Y. B.; Lee, K. J.; Park, C. H.: Soft set theory applied to ideals in d-algebras, Comput. math. Appl. 57, No. 3, 367-378 (2009) · Zbl 1165.03339 · doi:10.1016/j.camwa.2008.11.002
[17] Pawlak, Z.; Skowron, A.: Rudiments of rough sets, Inform. sci. 177, No. 1, 3-27 (2007) · Zbl 1142.68549 · doi:10.1016/j.ins.2006.06.003
[18] Yao, Y. Y.: A comparative study of fuzzy sets and rough sets, Inform. sci. 109, No. 1--4, 227-242 (1998) · Zbl 0932.03064 · doi:10.1016/S0020-0255(98)10023-3
[19] Pawlak, Z.: Rough set approach to knowledge-based decision support, Eur. J. Oper. res. 99, No. 1, 48-57 (1997) · Zbl 0923.90004 · doi:10.1016/S0377-2217(96)00382-7
[20] Pawlak, Z.: Rough sets, Int. J. Comput. inform. Sci. 11, No. 15, 341-356 (1982) · Zbl 0501.68053
[21] D. Pei, D. Miao, From soft sets to information systems, in: Granular Computing, 2005 IEEE International Conference on, 2005
[22] T. Herawan, M.M. Deris, A direct proof of every rough set is a soft set, in: 2009 Third Asia International Conference on Modelling & Simulation, Bali, Indonesia, 2009, pp. 119--124 · Zbl 1226.68111
[23] F. Feng, C. Li, B. Davvaz, M.I. Ali, Soft sets combined with fuzzy sets and rough sets: A tentative approach, in: Soft Computing, 2009 · Zbl 1201.03046
[24] F. Feng, Generalized rough fuzzy sets based on soft sets, in: 2009 International Workshop on Intelligent Systems and Applications, Wuhan, China, 2009, p. 4
[25] Z. Xiao, K. Gong, D. Li, The bijective soft sets and its operations (submitted for publication)
[26] Guan, Y.; Wang, H.: Set-valued information systems, Inform. sci. 176, 2507-2525 (2006) · Zbl 1101.68095 · doi:10.1016/j.ins.2005.12.007