×

Smooth projective toric varieties whose nontrivial nef line bundles are big. (English) Zbl 1189.14056

For every \(k \geq 5\), the authors construct a smooth projective toric threefold of Picard number \(k\) on which every nontrivial nef line bundle is big. These examples complement the work of the author and S. Payne [Proc. Japan Acad., Ser. A 81, No. 10, 174-179 (2005; Zbl 1141.14313)], where complete (non-projective) toric threefolds without nontrivial nef line bundles were described. The toric varieties in question are obtained by suitably blowing up \(\mathbb{P}^3\).

MSC:

14M25 Toric varieties, Newton polyhedra, Okounkov bodies
14E30 Minimal model program (Mori theory, extremal rays)

Citations:

Zbl 1141.14313

References:

[1] V. V. Batyrev, On the classification of smooth projective toric varieties, Tohoku Math. J. (2) 43 (1991), no. 4, 569-585. · Zbl 0792.14026 · doi:10.2748/tmj/1178227429
[2] O. Fujino, Notes on toric varieties from Mori theoretic viewpoint, Tohoku Math. J. (2) 55 (2003), no. 4, 551-564. · Zbl 1078.14077 · doi:10.2748/tmj/1113247130
[3] O. Fujino, On the Kleiman-Mori cone, Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 5, 80-84. · Zbl 1093.14025 · doi:10.3792/pjaa.81.80
[4] O. Fujino and S. Payne, Smooth complete toric threefolds with no nontrivial nef line bundles, Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 10, 174-179. · Zbl 1141.14313 · doi:10.3792/pjaa.81.174
[5] O. Fujino and H. Sato, Introduction to the toric Mori theory, Michigan Math. J. 52 (2004), no. 3, 649-665. · Zbl 1078.14019 · doi:10.1307/mmj/1100623418
[6] W. Fulton, Introduction to toric varieties , Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993. · Zbl 0813.14039
[7] R. Lazarsfeld, Positivity in algebraic geometry. I. Classical setting: line bundles and linear series , Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 48, Springer-Verlag, Berlin, 2004. · Zbl 1093.14501
[8] K. Matsuki, Weyl groups and birational transformations among minimal models, Mem. Amer. Math. Soc. 116 (1995), no. 557, vi+133 pp. · Zbl 0857.14008 · doi:10.1090/memo/0557
[9] S. Mori and S. Mukai, Classification of Fano \(3\)-folds with \(B_{2}\geq 2\), Manuscripta Math. 36 (1981/82), no. 2, 147-162. · Zbl 0478.14033 · doi:10.1007/BF01170131
[10] T. Oda, Torus embeddings and applications , Based on joint work with Katsuya Miyake. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 57, Tata Institute of Fundamental Research, Bombay, Springer-Verlag, Berlin-New York, 1978. · Zbl 0417.14043
[11] T. Oda, Convex bodies and algebraic geometry , An introduction to the theory of toric varieties, Translated from the Japanese, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 15, Springer-Verlag, Berlin, 1988. · Zbl 0628.52002
[12] M. Reid, Decomposition of toric morphisms, in Arithmetic and geometry, Vol. II, Progr. Math., 36, Birkhäuser Boston, Boston, MA., pp. 395-418, 1983. · Zbl 0571.14020 · doi:10.1007/978-1-4757-9286-7_15
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.