Chen, Wenjuan; Zhang, Shunhua Intuitionistic fuzzy Lie sub-superalgebras and intuitionistic fuzzy ideals. (English) Zbl 1189.17024 Comput. Math. Appl. 58, No. 8, 1645-1661 (2009). Summary: The concepts of intuitionistic fuzzy sets are introduced to Lie superalgebras. Intuitionistic fuzzy Lie sub-superalgebras and intuitionistic fuzzy ideals of Lie superalgebras are defined and related properties are investigated. As the applications of intuitionistic fuzzy Lie sub-superalgebras and intuitionistic fuzzy ideals, the properties of intuitionistic fuzzy Lie sub-superalgebras and intuitionistic fuzzy ideals under homomorphisms of Lie superalgebras are studied. The intuitionistic fuzzy bracket product is also introduced and its characterization is established. Cited in 1 Document MSC: 17B99 Lie algebras and Lie superalgebras 03E72 Theory of fuzzy sets, etc. Keywords:intuitionistic fuzzy set; intuitionistic fuzzy Lie sub-superalgebras; intuitionistic fuzzy ideals; Lie superalgebras PDF BibTeX XML Cite \textit{W. Chen} and \textit{S. Zhang}, Comput. Math. Appl. 58, No. 8, 1645--1661 (2009; Zbl 1189.17024) Full Text: DOI OpenURL References: [1] Kac, V.G., Lie superalgebras, Adv. math., 26, 8-96, (1977) · Zbl 0366.17012 [2] Corwin, L.; Ne’eman, Y.; Sternberg, S., Graded Lie algebras in mathematics and physics (bose – fermi symmetry), Rev. mod. phys, 47, 573-604, (1975) · Zbl 0557.17004 [3] Hughes, J.W.B.; Van der Jeugt, J., Unimodal polynomials associated with Lie algebras and superalgebras, J. comput. appl. math., 37, 81-88, (1991) · Zbl 0748.11020 [4] Zadeh, L.A., Fuzzy sets, Inform. control, 8, 338-353, (1965) · Zbl 0139.24606 [5] Atanassov, K.T., Intuitionistic fuzzy sets, Fuzzy sets and systems, 20, 87-96, (1986) · Zbl 0631.03040 [6] Atanassov, K.T., New operations defined over the intuitionistic fuzzy sets, Fuzzy sets and systems, 61, 137-142, (1994) · Zbl 0824.04004 [7] Biswas, R., Intuitionistic fuzzy subgroups, Math. forum, 10, 37-46, (1989) [8] Banerjee, B.; Basnet, D.Kr., Intuitionistic fuzzy subrings and ideals, J. fuzzy math., 11, 1, 139-155, (2003) · Zbl 1034.16049 [9] Jun, Y.B.; Ozturk, M.A.; Park, C.H., Intuitionistic nil radicals of intuitionistic fuzzy ideals and Euclidean intuitionistic fuzzy ideals in rings, Inform. sci., 177, 4662-4677, (2007) · Zbl 1129.16041 [10] Davvaz, B.; Dudek, W.A.; Jun, Y.B., Intuitionistic fuzzy \(H_\upsilon\)-submodules, Inform. sci., 176, 285-300, (2006) · Zbl 1090.16028 [11] Akram, M., Intuitionistic \((S, T)\)-fuzzy Lie ideals of Lie algebras, Quasigroups related systems, 15, 201-218, (2007) · Zbl 1132.17307 [12] Akram, M.; Shum, K.P., Intuitionistic fuzzy Lie algebras, Southeast Asian bull. math., 31, 5, 843-855, (2007) · Zbl 1150.17024 [13] Akram, M., Intuitionistic fuzzy Lie ideals of Lie algebras, Int. J. fuzzy math., 16, 4, 991-1008, (2008) · Zbl 1168.17017 [14] Dudek, W.A., Intuitionistic fuzzy \(h\)-ideals of hemirings, WSEAS trans. math., 12, 1315-1331, (2006) [15] Dudek, W.A.; Davvaz, B.; Jun, Y.B., On intuitionistic fuzzy subhyper-quasigroups of hyperquasigroups, Inform. sci., 170, 251-262, (2005) · Zbl 1072.20088 [16] Hur, K.; Jang, S.Y.; Kang, H.W., Intuitionistic fuzzy ideals of a ring, J. Korea soc. math. educ. ser.B: pure appl. math., 12, 193-209, (2005) · Zbl 1138.16308 [17] Hur, K.; Kang, H.W.; Song, H.K., Intuitionistic fuzzy subgroups and subrings, Honam math. J., 25, 19-41, (2003) · Zbl 1333.20080 [18] Kim, Chung-Gook; Lee, Dong-Soo, Fuzzy Lie ideals and fuzzy Lie subalgebras, Fuzzy sets and systems, 94, 101-104, (1998) · Zbl 0922.17018 [19] El-Badawy Yehia, Samy, Fuzzy ideals and fuzzy subalgebras of Lie algebras, Fuzzy sets and systems, 80, 237-244, (1996) · Zbl 0874.17032 [20] El-Badawy Yehia, Samy, The adjoint representation of fuzzy Lie algebras, Fuzzy sets and systems, 119, 409-417, (2001) · Zbl 0996.17018 [21] Wakimoto, Minoru, () This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.