Delorme, Patrick; Mezo, Paul A twisted invariant Paley-Wiener theorem for real reductive groups. (English) Zbl 1189.22005 Duke Math. J. 144, No. 2, 341-380 (2008). Summary: Let \(G^+\) be the group of real points of a possibly disconnected linear reductive algebraic group defined over \(\mathbb R\) which is generated by the real points of a connected component \(G'\). Let \(K\) be a maximal compact subgroup of the group of real points of the identity component of this algebraic group. We characterize the space of maps \(\pi\mapsto \text{tr}(\pi(f))\), where \(\pi\) is an irreducible tempered representation of \(G^+\) and \(f\) varies over the space of smooth, compactly supported functions on \(G'\) which are left and right \(K\)-finite. This work is motivated by applications to the twisted Arthur-Selberg trace formula. Cited in 1 ReviewCited in 8 Documents MSC: 22E30 Analysis on real and complex Lie groups 22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods 22E47 Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.) PDF BibTeX XML Cite \textit{P. Delorme} and \textit{P. Mezo}, Duke Math. J. 144, No. 2, 341--380 (2008; Zbl 1189.22005) Full Text: DOI OpenURL References: [1] J. Arthur, A Paley-Wiener theorem for real reductive groups , Acta Math. 150 (1983), 1–89. · Zbl 0514.22006 [2] -, The invariant trace formula, II , J. Amer. Math. Soc. 3 (1988), 501–554. JSTOR: · Zbl 0667.10019 [3] -, Intertwining operators and residues, I , J. Funct. Anal. 84 (1989), 19–84. · Zbl 0679.22011 [4] A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups , Ann. of Math. (2) 75 (1962), 485–535. JSTOR: · Zbl 0107.14804 [5] A. Bouaziz, Intégrales orbitales sur les groupes de Lie réductifs , Ann. Sci. École Norm. Sup. (4) 27 (1994), 573–609. · Zbl 0832.22017 [6] N. Bourbaki, Elements of Mathematics: Lie Groups and Lie Algebras, chapters 4–6 , Elem. Math. (Berlin), Springer, Berlin, 2002. · Zbl 0983.17001 [7] L. Clozel and P. Delorme, Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs , Invent. Math. 77 (1984), 427–453. · Zbl 0584.22005 [8] -, Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs, II , Ann. Sci. École Norm. Sup. (4) 23 (1990), 193–228. · Zbl 0724.22012 [9] P. Delorme, Homomorphismes de Harish-Chandra liés aux \(k\)-types minimaux des séries principales généralisées des groupes de Lie réductifs connexes , Ann. Sci. École Norm. Sup. (4) 17 (1984), 117–156. · Zbl 0582.22009 [10] -, Théorème de Paley-Wiener invariant tordu pour le changement de base \(\mathbbC/\mathbbR\) , Compositio Math. 80 (1991), 197–228. · Zbl 0765.22007 [11] -, Sur le théorème de Paley-Wiener d’Arthur , Ann. of Math. (2) 162 (2005), 987–1029. · Zbl 1121.22002 [12] P. Delorme and M. Flensted-Jensen, Towards a Paley-Wiener theorem for semisimple symmetric spaces , Acta Math. 167 (1991), 127–151. · Zbl 0806.22009 [13] S. Helgason, Fundamental solutions of invariant differential operators on symmetric spaces , Amer. J. Math 86 (1964), 565–601. JSTOR: · Zbl 0178.17001 [14] A. W. Knapp and E. M. Stein, Intertwining operators for semisimple groups, II , Invent. Math. 60 (1980), 9–84. · Zbl 0454.22010 [15] A. W. Knapp and G. J. Zuckerman, Classification of irreducible tempered representations of semisimple groups, I, Ann. of Math. (2) 116 (1982), 389–455.; II , 457–501.; Correction , Ann. of Math. (2) 119 (1984), 639. \(\!\); \(\!\); Mathematical Reviews (MathSciNet): Mathematical Reviews (MathSciNet): MR0744867 JSTOR: links.jstor.org · Zbl 0516.22011 [16] R. P. Langlands, “On the classification of irreducible representations of real algebraic groups” in Representation Theory and Harmonic Analysis on Semisimple Lie Groups , Math. Surveys Monogr. 31 , Amer. Math. Soc., Providence, 1989, 101–170. · Zbl 0741.22009 [17] P. Mezo, Twisted trace Paley-Wiener theorems for special and general linear groups , Compos. Math. 140 (2004), 205–227. · Zbl 1050.22013 [18] -, Automorphism-invariant representations of real reductive groups , Amer. J. Math. 129 (2007), 1063–1085. · Zbl 1125.22006 [19] D. Renard, Intégrales orbitales tordues sur les groupes de Lie réductifs réels , J. Funct. Anal. 145 (1997), 374–454. 1444087 · Zbl 0877.22002 [20] D. Shelstad, \(L\)-i ndistinguishability for real groups, Math. Ann. 259 (1982), 385–430. · Zbl 0506.22014 [21] D. A. Vogan Jr., The algebraic structure of the representation of semisimple Lie groups, I , Ann. of Math. (2) 109 (1979), 1–60. · Zbl 0424.22010 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.