×

The Fekete-Szegő problem for subclasses of analytic functions defined by a differential operator related to conic domains. (English) Zbl 1189.30049

Summary: By using a linear multiplier fractional differential operator a new subclass of analytic functions generalized \(\beta\)-uniformly convex functions, denoted by \(\beta-SP^{n,\alpha}_{\lambda,\mu}(\gamma)\), is introduced. For this class the Fekete-Szegő problem is completely solved. Various known or new special cases of our results are also pointed out.

MSC:

30C50 Coefficient problems for univalent and multivalent functions of one complex variable
26A33 Fractional derivatives and integrals
30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
41A35 Approximation by operators (in particular, by integral operators)
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Bharti, R.; Parvatham, R.; Swaminathan, A., On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math., 28, 17-32 (1997) · Zbl 0898.30010
[2] Kanas, S.; Wisniowska, A., Conic regions and \(k\)-uniform convexity, J. Comput. Appl. Math., 105, 327-336 (1999) · Zbl 0944.30008
[3] Goodman, A. W., On uniformly convex functions, Ann. Polon. Math., 56, 87-92 (1991) · Zbl 0744.30010
[4] Rønning, F., Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118, 189-196 (1993) · Zbl 0805.30012
[5] Al-Oboudi, F. M.; Al-Amoudi, K. A., On classes of analytic functions related to conic domains, J. Math. Anal. Appl., 339, 655-667 (2008) · Zbl 1132.30010
[6] Mishra, A. K.; Gochhayat, P., The Fekete-Szegö problem for \(k\)-uniformly convex functions and for a class defined by Owa-Srivastava operator, J. Math. Anal. Appl., 347, 563-572 (2008) · Zbl 1152.30012
[7] Carlson, B. C.; Shaffer, D. B., Starlike and pre-starlike hypergeometric functions, SIAM J. Math. Anal., 15, 737-745 (1984) · Zbl 0567.30009
[8] Owa, S.; Srivastava, H. M., Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39, 1057-1077 (1987) · Zbl 0611.33007
[9] Salagean, G.Ş., Subclasses of univalent functions, (Complex Analysis — Proc. 5th Rom.-Finn. Semin., Bucharest 1981, Part 1. Complex Analysis — Proc. 5th Rom.-Finn. Semin., Bucharest 1981, Part 1, Lect. Notes Math., vol. 1013 (1983)), 362-372
[10] Al-Oboudi, F. M., On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci., 27, 1429-1436 (2004) · Zbl 1072.30009
[11] Duren, P. L., Univalent Functions (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0398.30010
[12] Srivastava, H. M.; Mishra, A. K.; Das, M. K., A nested class of analytic functions defined by fractional calculus, Commun. Appl. Anal., 2, 3, 321-332 (1998) · Zbl 0897.30003
[13] Srivastava, H. M.; Mishra, A. K., Applications of fractional calculus to parabolic starlike and uniformly convex functions, Comput. Math. Appl., 39, 57-69 (2000) · Zbl 0948.30018
[14] Kanas, S.; Yaguchi, T., Subclasses of \(k\)-uniform convex and starlike functions defined by generalized derivative, I, Indian J. Pure Appl. Math., 32, 9, 1275-1282 (2001) · Zbl 1152.30309
[15] Ma, W.; Minda, D., Uniformly convex functions, Ann. Polon. Math., 57, 2, 165-175 (1992) · Zbl 0760.30004
[16] Kanas, S.; Wisniowska, A., Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl., 45, 647-657 (2000) · Zbl 0990.30010
[17] Mishra, A. K.; Gochhayat, P., Applications of the Owa-Srivastava operator to the class of \(k\)-uniformly convex functions, Fract. Calc. Appl. Anal., 9, 4 (2006) · Zbl 1132.30321
[18] Fekete, M.; Szegö, G., Eine Bemerkung über ungerade schlichte Functionen, J. London Math. Soc., 8, 85-89 (1933), (in German) · JFM 59.0347.04
[19] Ma, W.; Minda, D., Uniformly convex functions II, Ann. Polon. Math., 58, 275-285 (1993) · Zbl 0792.30008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.