Positive solutions for a class of boundary-value problems with integral boundary conditions. (English) Zbl 1189.34035

Summary: This paper investigates the existence and multiplicity of positive solutions for a class of nonlinear boundary-value problems of fourth-order differential equations with integral boundary conditions. The arguments are based upon a specially constructed cone and the fixed-point theory in cone. The nonexistence of positive solutions is also studied.


34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations
Full Text: DOI


[1] Bitsadze, A. V., On the theory of nonlocal boundary value problems, Soviet Math. Dock., 30, 8-10 (1964) · Zbl 0586.30036
[2] Bitsadze, A. V.; Samarskii, A. A., Some elementary generalizations of linear elliptic boundary value problems, Dokl. Akad. Nauk SSSR, 185, 739-740 (1969) · Zbl 0187.35501
[3] Yang, B., Positive solutions for a fourth order boundary value problem, E. J. Qual. Theory Diff. Equ., 3, 1-17 (2005)
[4] Il in, V.; Moiseev, E., Nonlocal boundary value problems of the second kind for a Sturm-Liouville operator, Differential Equations, 23, 979-987 (1987) · Zbl 0668.34024
[6] Gupta, C. P., Existence and uniqueness theorem for a bending of an elastic beam equation, Appl. Anal., 26, 289-304 (1988) · Zbl 0611.34015
[7] Gupta, C. P., Existence and uniqueness results for some fourth order fully quasilinear boundary value problem, Appl. Anal., 36, 169-175 (1990)
[8] Liu, B., Positive solutions of fourth-order two point boundary value problem, Appl. Math. Comput., 148, 407-420 (2004) · Zbl 1039.34018
[9] Graef, J. R.; Qian, C.; Yang, B., A three point boundary value problem for nonlinear fourth order differential equations, J. Math. Anal. Appl., 287, 217-233 (2003) · Zbl 1054.34038
[10] Anderson, D. R.; Avery, R. I., A fourth-order four-point right focal boundary value problem, Rocky Mt. J. Math., 36, 2 (2006) · Zbl 1137.34008
[11] Ma, R., Positive solutions of fourth-order two point boundary value problems, Ann. Differential Equations, 15, 305-313 (1999) · Zbl 0964.34021
[12] Guo, Y.; Shan, W.; Ge, W., Positive solutions for a second order \(m\)-point boundary value problem, J. Comput. Appl. Math., 151, 415-424 (2003) · Zbl 1026.34016
[13] Guo, Y.; Tian, J., Positive solutions of \(m\)-point boundary value problems for higher order ordinary differential equations, Nonlinear Anal., 66, 1573-1586 (2007) · Zbl 1117.34025
[14] Ma, R.; Zhang, J.; Fu, S., The method of lower and upper solutions for fourth-order two-point boundary value problems, J. Math. Anal. Appl., 215, 415-422 (1997) · Zbl 0892.34009
[15] Ma, R.; Wang, H., On the existence of positive solutions of fourth-order ordinary differential equations, Appl. Anal., 59, 225-231 (1995) · Zbl 0841.34019
[16] Bai, Z.; Wang, H., On the positive solutions of some nonlinear fourth-order beam equations, J. Math. Anal. Appl., 270, 357-368 (2002) · Zbl 1006.34023
[17] Wang, H., On the number of positive solutions of nonlinear systems, J. Math. Anal. Appl., 281, 287-306 (2003) · Zbl 1036.34032
[18] Jiang, D. Q.; Gao, W. J.; Wan, A., A monotone method for constructing extremal solutions to fourth-order periodic boundary value problems, Appl. Math. Comput., 132, 411-421 (2002) · Zbl 1036.34020
[19] Feng, W.; Weeb, T. R.L., Solvability of a \(m\)-point boundary value problem with nonlinear growth, J. Math. Anal. Appl., 212, 467-480 (1997) · Zbl 0883.34020
[20] Wei, Z.; Pang, C., Positive solutions of some singular \(m\)-point boundary value problems at non-resonance, Appl. Math. Comput., 171, 433-449 (2005) · Zbl 1085.34017
[21] Cheung, W.; Ren, J., Positive solutions for \(m\)-point boundary-value problems, J. Math. Anal. Appl., 303, 565-575 (2005) · Zbl 1071.34020
[22] Feng, M.; Ji, D.; Ge, W., Positive solutions for a class of boundary value problem with integral boundary conditions in Banach spaces, J. Comput. Appl. Math., 222, 351-363 (2008) · Zbl 1158.34336
[23] Zhang, G.; Sun, J., Positive solutions of \(m\)-point boundary value problems, J. Math. Anal. Appl., 291, 406-418 (2004) · Zbl 1069.34037
[24] Zhang, Z.; Wang, J., The upper and lower solution method for a class of singular nonlinear second order three-point boundary value problems, J. Comput. Appl. Math., 147, 41-52 (2002) · Zbl 1019.34021
[25] Feng, M.; Ge, W., Positive solutions for a class of \(m\)-point singular boundary value problems, Math. Comput. Modelling, 46, 375-383 (2007) · Zbl 1142.34012
[26] Aftabizadeh, A. R., Existence and uniqueness theorems for fourth-order boundary problems, J. Math. Anal. Appl., 116, 415-426 (1986) · Zbl 0634.34009
[27] Yang, Y., Fourth-order two-point boundary value problem, Proc. Amer. Math. Soc., 104, 175-180 (1988) · Zbl 0671.34016
[28] Del Pino, M. A.; Manasevich, R. F., Existence for fourth-order boundary value problem under a two-parameter nonresonance condition, Proc. Amer. Math. Soc., 112, 81-86 (1991) · Zbl 0725.34020
[29] Yang, Z., Positive solutions to a system of second-order nonlocal boundary value problems, Nonlinear Anal., 62, 1251-1265 (2005) · Zbl 1089.34022
[30] Liu, Z.; Zhang, X., A class of two-point boundary value problems, J. Math. Anal. Appl., 254, 599-617 (2001) · Zbl 0983.34010
[31] Ma, H., Symmetric positive solutions for nonlocal boundary value problems of fourth order, Nonlinear Anal., 68, 645-651 (2008) · Zbl 1135.34310
[32] Gallardo, J. M., Second order differential operators with integral boundary conditions and generation of semigroups, Rocky Mt. J. Math., 30, 1265-1292 (2000) · Zbl 0984.34014
[33] Karakostas, G. L.; Tsamatos, P. Ch., Multiple positive solutions of some Fredholm integral equations arisen from nonlocal boundary-value problems, Electron. J. Differential Equations, 30, 1-17 (2002) · Zbl 0998.45004
[34] Lomtatidze, A.; Malaguti, L., On a nonlocal boundary-value problems for second order nonlinear singular differential equations, Georg. Math. J., 7, 133-154 (2000) · Zbl 0967.34011
[35] Corduneanu, C., Integral Equations and Applications (1991), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0714.45002
[36] Agarwal, R. P.; O’Regan, D., Infinite Interval Problems for Differential, Difference and Integral Equations (2001), Kluwer Academic Publishers: Kluwer Academic Publishers Dordtreht · Zbl 1003.39017
[37] Guo, D. J.; Lakshmikantham, V., Nonlinear Problems in Abstract Cones (1988), Academic Press, Inc.: Academic Press, Inc. New York · Zbl 0661.47045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.