zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Successive iteration and positive solutions for a second-order multi-point boundary value problem on a half-line. (English) Zbl 1189.34057
Summary: This paper deals with the existence of positive solutions for some second-order multi-point boundary value problem on the half-line. Our approach is based on the fixed point theorem and the monotone iterative technique. Without the assumption of the existence of lower and upper solutions, we obtain not only the existence of positive solutions for the problems, but also establish iterative schemes for approximating the solutions.

34B18Positive solutions of nonlinear boundary value problems for ODE
34B10Nonlocal and multipoint boundary value problems for ODE
34B40Boundary value problems for ODE on infinite intervals
Full Text: DOI
[1] Chen, S.; Zhang, Y.: Singular boundary value problems on a half-line, J. math. Anal. appl. 195, 449-468 (1995) · Zbl 0852.34019 · doi:10.1006/jmaa.1995.1367
[2] Liu, X.: Solutions of impulsive boundary value problems on the half-line, J. math. Anal. appl. 222, 411-430 (1998) · Zbl 0912.34021 · doi:10.1006/jmaa.1997.5908
[3] O’regan, D.: Theory of singular boundary value problems, (1994) · Zbl 0807.34028
[4] Zima, M.: On positive solution of boundary value problems on the half-line, J. math. Anal. appl. 259, 127-136 (2001) · Zbl 1003.34024 · doi:10.1006/jmaa.2000.7399
[5] Liu, Y.: Existence and unboundedness of positive solutions for singular boundary value problems on half-line, Appl. math. Comput. 144, 543-556 (2003) · Zbl 1036.34027 · doi:10.1016/S0096-3003(02)00431-9
[6] Lian, H.; Pang, H.; Ge, W.: Triple positive solutions for boundary value problems on infinite intervals, Nonlinear anal. 67, 2199-2207 (2007) · Zbl 1128.34011 · doi:10.1016/j.na.2006.09.016
[7] Yan, B.: Boundary value problems on the half-line with impulses and infinite delay, J. math. Anal. appl. 259, 94-114 (2001) · Zbl 1009.34059 · doi:10.1006/jmaa.2000.7392
[8] Ma, D.; Du, Z.; Ge, W.: Existence and iteration of monotone positive solutions for multipoint boundary value problems with p-Laplacian operator, Comput. math. Appl. 50, 729-739 (2005) · Zbl 1095.34009 · doi:10.1016/j.camwa.2005.04.016
[9] Sun, B.; Ge, W.: Existence and iteration of positive solutions for some p-Laplacian boundary value problems, Nonlinear anal. 67, 1820-1830 (2007) · Zbl 1122.34307 · doi:10.1016/j.na.2006.08.025
[10] Sun, B.; Ge, W.: Successive iteration and positive pseudo-symmetric solutions for a three-point second-order p-Laplacian boundary value problems, Appl. math. Comput. 188, 1772-1779 (2007) · Zbl 1119.65072 · doi:10.1016/j.amc.2006.11.040
[11] Il’in, V. A.; Moiseer, E. I.: Nonlocal boundary value problem of the first kind for a Sturm--Liouville operator in its differential and finite difference aspects, Differ. equ. 23, 803-810 (1987) · Zbl 0668.34025
[12] Gupta, C. P.: Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equations, J. math. Anal. appl. 168, 540-551 (1992) · Zbl 0763.34009 · doi:10.1016/0022-247X(92)90179-H
[13] Zhang, Z. X.; Wang, J. Y.: The upper and lower solution method for a class of singular nonlinear second order three-point boundary value problems, J. comput. Appl. math. 147, 41-52 (2002) · Zbl 1019.34021 · doi:10.1016/S0377-0427(02)00390-4
[14] Xu, X.: Positive solutions for singular m-point boundary value problems with positive parameter, J. math. Anal. appl. 291, 352-367 (2004) · Zbl 1047.34016 · doi:10.1016/j.jmaa.2003.11.009
[15] Sun, J. X.; Xu, X.; O’regan, D.: Nodal solutions for m-point boundary value problems using bifurcation methods, Nonlinear anal. 68, 3034-3046 (2008) · Zbl 1141.34009 · doi:10.1016/j.na.2007.02.043
[16] Zhang, X. G.; Liu, L. S.: Positive solutions of fourth-order multi-point boundary value problems with bending term, Appl. math. Comput. 194, 321-332 (2007) · Zbl 1193.34050 · doi:10.1016/j.amc.2007.04.028