zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On almost automorphic mild solutions for fractional semilinear initial value problems. (English) Zbl 1189.34079
Summary: This paper investigates almost automorphic mild solutions of the fractional semilinear equation $D\alpha x(t)=Ax(t)+f(t,x(t))$, $0<\alpha <1$, considered in a Banach space $X$, where $A$ is a linear operator of sectorial type $\omega <0$. Some sufficient conditions are given for the existence, uniqueness and uniform stability of almost automorphic mild solutions to this semilinear equation.

34C27Almost and pseudo-almost periodic solutions of ODE
26A33Fractional derivatives and integrals (real functions)
34A08Fractional differential equations
34G20Nonlinear ODE in abstract spaces
45J05Integro-ordinary differential equations
Full Text: DOI
[1] Podlubny, I.: Fractional differential equations, (1999) · Zbl 0924.34008
[2] Diethelm, K.; Ford, N. J.: Analysis of fractional differential equations, J. math. Anal. appl. 265, 229-248 (2002) · Zbl 1014.34003 · doi:10.1006/jmaa.2001.7194
[3] Yu, C.; Gao, G.: On the solution of nonlinear fractional order differential equation, Nonlinear anal. 63, e971-e976 (2005) · Zbl 1224.34005 · doi:10.1016/j.na.2005.01.008
[4] Delbosco, D.; Rodino, L.: Existence and uniqueness for a nonlinear fractional differential equation, J. math. Anal. appl. 204, 609-625 (1996) · Zbl 0881.34005 · doi:10.1006/jmaa.1996.0456
[5] Zhang, S.: The existence of a positive solution for a nonlinear fractional differential equation, J. math. Anal. appl. 252, 804-812 (2000) · Zbl 0972.34004 · doi:10.1006/jmaa.2000.7123
[6] Daftardar-Gejji, V.: Positive solutions of a system of non-autonomous fractional differential equations, J. math. Anal. appl. 302, 56-64 (2005) · Zbl 1064.34004 · doi:10.1016/j.jmaa.2004.08.007
[7] Cuevas, C.; Lizama, C.: Almost automorphic mild solutions to a class of fractional differential equations, Appl. math. Lett. 21, 1315-1319 (2008) · Zbl 1192.34006 · doi:10.1016/j.aml.2008.02.001
[8] Fu, X.; Ezzinbi, K.: Existence of solutions for neutral functional differential evolution equations with nonlocal conditions, Nonlinear anal. 54, 215-227 (2003) · Zbl 1034.34096 · doi:10.1016/S0362-546X(03)00047-6
[9] Hernández, E.: Existence results for partial neutral functional differential equations with nonlocal conditions, Cadenos de math. 02, 239-250 (2001)
[10] Araya, D.; Lizama, C.: Almost automorphic mild solutions to fractional differential equations, Nonlinear anal. 69, 3692-3705 (2008) · Zbl 1166.34033 · doi:10.1016/j.na.2007.10.004
[11] Jaradat, O. K.; Al-Omari, A.; Momani, S.: Existence of the mild solution for fractional semilinear initial value problems, Nonlinear anal. 69, 3153-3159 (2008) · Zbl 1160.34300 · doi:10.1016/j.na.2007.09.008
[12] Cuesta, E.: Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations, Discrete contin. Dyn. syst., No. Suppl., 277-285 (2007) · Zbl 1163.45306 · http://www.aimsciences.org/journals/redirecting.jsp?paperID=2810