×

zbMATH — the first resource for mathematics

Road networks with phase transitions. (English) Zbl 1189.35176

MSC:
35L65 Hyperbolic conservation laws
90B20 Traffic problems in operations research
35L67 Shocks and singularities for hyperbolic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1137/S0036139997332099 · Zbl 0957.35086 · doi:10.1137/S0036139997332099
[2] DOI: 10.3934/nhm.2006.1.41 · Zbl 1108.76063 · doi:10.3934/nhm.2006.1.41
[3] Bastin G., Netw. Heterog. Media 2 pp 227–
[4] Bayen A. M., Netw. Heterog. Media 2 pp 569–
[5] DOI: 10.1016/j.crme.2005.09.004 · Zbl 1177.90076 · doi:10.1016/j.crme.2005.09.004
[6] Bressan A., Oxford Lecture Series in Mathematics and its Applications 20, in: Hyperbolic Systems of Conservation Laws, The One-Dimensional Cauchy Problem (2000)
[7] Chitour Y., Discrete Contin. Dyn. Syst. Ser. B 5 pp 599–
[8] DOI: 10.1137/S0036141004402683 · Zbl 1114.90010 · doi:10.1137/S0036141004402683
[9] DOI: 10.1137/S0036139901393184 · Zbl 1037.35043 · doi:10.1137/S0036139901393184
[10] DOI: 10.1007/s10492-004-6430-x · Zbl 1099.35063 · doi:10.1007/s10492-004-6430-x
[11] Colombo R. M., Netw. Heterog. Media 1 pp 495–
[12] DOI: 10.1137/060665841 · doi:10.1137/060665841
[13] DOI: 10.1016/j.na.2006.03.029 · Zbl 1113.35123 · doi:10.1016/j.na.2006.03.029
[14] DOI: 10.1007/978-3-662-22019-1 · doi:10.1007/978-3-662-22019-1
[15] D’Apice C., Netw. Heterog. Media 1 pp 379–
[16] DOI: 10.1137/050631628 · Zbl 1147.35331 · doi:10.1137/050631628
[17] DOI: 10.3934/nhm.2007.2.159 · Zbl 1142.35511 · doi:10.3934/nhm.2007.2.159
[18] DOI: 10.4310/CMS.2005.v3.n3.a1 · Zbl 1136.90324 · doi:10.4310/CMS.2005.v3.n3.a1
[19] DOI: 10.1080/03605300500358053 · Zbl 1090.90032 · doi:10.1080/03605300500358053
[20] Garavello M., AIMS Series on Applied Mathematics 1, in: Traffic Flow on Networks. Conservation Laws Models (2006) · Zbl 1136.90012
[21] DOI: 10.3934/nhm.2009.4.107 · Zbl 1186.35227 · doi:10.3934/nhm.2009.4.107
[22] DOI: 10.1016/j.mcm.2006.01.016 · Zbl 1134.35379 · doi:10.1016/j.mcm.2006.01.016
[23] DOI: 10.4310/CMS.2005.v3.n4.a5 · Zbl 1115.90008 · doi:10.4310/CMS.2005.v3.n4.a5
[24] Greenberg J. M., SIAM J. Appl. Math. 63 pp 818–
[25] DOI: 10.1103/PhysRevE.51.3164 · doi:10.1103/PhysRevE.51.3164
[26] DOI: 10.1103/RevModPhys.73.1067 · doi:10.1103/RevModPhys.73.1067
[27] DOI: 10.3934/nhm.2007.2.193 · Zbl 1160.90344 · doi:10.3934/nhm.2007.2.193
[28] DOI: 10.3934/nhm.2006.1.275 · Zbl 1131.90016 · doi:10.3934/nhm.2006.1.275
[29] DOI: 10.1137/S0036141093243289 · Zbl 0833.35089 · doi:10.1137/S0036141093243289
[30] DOI: 10.1007/978-3-642-56139-9 · doi:10.1007/978-3-642-56139-9
[31] DOI: 10.1098/rspa.1955.0089 · Zbl 0064.20906 · doi:10.1098/rspa.1955.0089
[32] H. J. Payne, Mathematical Models of Public Systems, Simulation Council Proceedings Series 28 (1971) pp. 51–61.
[33] DOI: 10.1287/opre.4.1.42 · doi:10.1287/opre.4.1.42
[34] DOI: 10.1137/050627113 · Zbl 1102.35068 · doi:10.1137/050627113
[35] DOI: 10.1090/conm/017/16 · Zbl 0538.35050 · doi:10.1090/conm/017/16
[36] Whitham G. B., Pure and Applied Mathematics, in: Linear and Nonlinear Waves (1974) · Zbl 0373.76001
[37] DOI: 10.1016/S0191-2615(00)00050-3 · doi:10.1016/S0191-2615(00)00050-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.