zbMATH — the first resource for mathematics

Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem. (English) Zbl 1189.35349
Summary: We study the observability and some of its consequences (controllability, identification of diffusion coefficients) for one-dimensional heat equations with discontinuous coefficients (piecewise \({\mathcal C}^1\)). The observability, for a linear equation, is obtained by a Carleman-type estimate. This kind of observability inequality yields controllability results for a semi-linear equation as well as a stability result for the identification of the diffusion coefficient.

35R05 PDEs with low regular coefficients and/or low regular data
93B07 Observability
93B05 Controllability
35R30 Inverse problems for PDEs
35B45 A priori estimates in context of PDEs
Full Text: DOI
[1] Ammar Khodja, F.; Benabdallah, A.; Dupaix, C., Null controllability of some reaction – diffusion systems with one control force, J. math. anal. appl., 320, 928-943, (2006) · Zbl 1157.93004
[2] Ammar Khodja, F.; Benabdallah, A.; Dupaix, C.; Kostin, I., Null-controllability of some systems of parabolic type by one control force, ESAIM control optim. calc. var., 11, 426-448, (2005) · Zbl 1125.93005
[3] Aubin, J.-P., Applied functional analysis, (1979), John Wiley & Sons New York
[4] Barbu, V., Exact controllability of the superlinear heat equation, Appl. math. optim., 42, 73-89, (2000) · Zbl 0964.93046
[5] A. Benabdallah, P. Gaitan, J. Le Rousseau, Stability of discontinuous diffusion coefficients and initial conditions in an inverse problem for the heat equation, SIAM J. Control Optim., in press · Zbl 1155.35485
[6] Brezis, H., Analyse fonctionnelle, (1983), Masson Paris · Zbl 0511.46001
[7] Doubova, A.; Fernandez-Cara, E.; Gonzales-Burgos, M.; Zuazua, E., On the controllability of parabolic systems with a nonlinear term involving the state and the gradient, SIAM J. control optim., 41, 798-819, (2002) · Zbl 1038.93041
[8] Doubova, A.; Osses, A.; Puel, J.-P., Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients, ESAIM control optim. calc. var., 8, 621-661, (2002) · Zbl 1092.93006
[9] Fabre, C.; Puel, J.-P.; Zuazua, E., Approximate controllability of the semilinear heat equation, Proc. roy. soc. Edinburgh sect. A, 125, 31-61, (1995) · Zbl 0818.93032
[10] Fernández-Cara, E.; Guerrero, S., Global Carleman inequalities for parabolic systems and application to controllability, SIAM J. control optim., 45, 4, 1395-1446, (2006) · Zbl 1121.35017
[11] Fernández-Cara, E.; Zuazua, E., Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. inst. H. Poincaré anal. non linéaire, 17, 583-616, (2000) · Zbl 0970.93023
[12] Fernández-Cara, E.; Zuazua, E., On the null controllability of the one-dimensional heat equation with BV coefficients, Comput. appl. math., 21, 167-190, (2002) · Zbl 1119.93311
[13] Fursikov, A.; Imanuvilov, O.Yu., Controllability of evolution equations, Lecture notes, vol. 34, (1996), Seoul National University Korea · Zbl 0862.49004
[14] M. Gonzales-Burgos, private communication, 2005
[15] Lions, J.-L., Quelques méthodes de Résolution des problèmes aux limites non linéaires, (1969), Dunod · Zbl 0189.40603
[16] Lions, J.-L., Contrôlabilité exacte perturbations et stabilisation de systèmes distribués, vol. 1, (1988), Masson Paris · Zbl 0653.93002
[17] Lions, J.-L.; Magenes, E., Problèmes aux limites non homogènes, vol. 1, (1968), Dunod · Zbl 0165.10801
[18] Russell, D.L., A unified boundary controllability theory for hyperbolic and parabolic partial differential equations, Studies appl. math., 52, 189-221, (1973) · Zbl 0274.35041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.