zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Assessing local turbulence strength from a time series. (English) Zbl 1189.37088
Summary: We study the possible link between “local turbulence strength” in a flow which is represented by a finite time series and a “chaotic invariant”, namely, the leading Lyaponuv exponent that characterizes this series. To validate a conjecture about this link, we analyze several time series of measurements taken by a plane flying at constant height in the upper troposphere. For each of these time series we estimate the leading Lyaponuv exponent which we then correlate with the structure constants for the temperature. In addition, we introduce a quantitative technique to educe the scale contents of the flow and a methodology to validate its spectrum.

37M10Time series analysis (dynamical systems)
Full Text: DOI EuDML
[1] H. D. I. Abarbanel, R. Brown, J. J. Sidorowich, and L. S. Tsimring, “The analysis of observed chaotic data in physical systems,” Reviews of Modern Physics, vol. 65, no. 4, pp. 1331-1392, 1993. · doi:10.1103/RevModPhys.65.1331
[2] J. M. Nese and J. A. Dutton, “Quantifying predictability variations in low order ocean-atmosphere model,” Journal of Climate, vol. 6, pp. 185-204, 1993. · doi:10.1175/1520-0442(1993)006<0185:QPVIAL>2.0.CO;2
[3] R. L. Fanta, “Wave propagation in random media,” Progress in Optics, vol. 22, pp. 342-399, 1985.
[4] V. Tatarskii, Wave Propagation in Turbulent Medium, Dover, New York, NY, USA, 1961. · Zbl 0114.41901
[5] B. D. Malamud and D. Turcotte, “Self-affine time series,” Advances in Geophysics, vol. 40, pp. 1-90, 1999. · Zbl 1045.62529
[6] H. A. Panofsky and J. A. Dutton, Atmospheric Turbulence, John Wiley & Sons, New York, NY, USA, 1989.
[7] R. Hegger, H. Kantz, and T. Schreiber, “Practical implementation of nonlinear time series methods: the TISEAN package,” Chaos, vol. 9, no. 2, pp. 413-435, 1999. · Zbl 0990.37522 · doi:10.1063/1.166424
[8] M. T. Rosenstein, J. J. Collins, and C. J. De Luca, “A practical method for calculating largest Lyapunov exponents from small data sets,” Physica D, vol. 65, no. 1-2, pp. 117-134, 1993. · Zbl 0779.58030 · doi:10.1016/0167-2789(93)90009-P
[9] E. M. Dewan, “Optical turbulence forecasting,” Tech. Rep. AFGL-TR-80-0030, Air Force Geophysical Laboratory, 1980.
[10] M. Humi, “Estimation of the atmospheric structure constants from airplane data,” Journal of Atmospheric and Oceanic Technology, vol. 21, no. 3, pp. 495-500, 2004. · doi:10.1175/1520-0426(2004)021<0495:EOTASC>2.0.CO;2
[11] J. Peinke, M. Klein, A. Kittel, A. Okninsky, J. Parisi, and O. E. Roessler, “On chaos, fractals and turbulence,” Physica Scripta, vol. T49, pp. 672-676, 1993.
[12] L. Cohen, “The scale representation,” IEEE Transactions on Signal Processing, vol. 41, pp. 3275-3293, 1993. · Zbl 0841.94007 · doi:10.1109/78.258073
[13] A. De Sena and D. Rocchesso, “A fast mellin and scale transform,” EURASIP Journal on Advances in Signal Processing, vol. 2007, Article ID 89170, 9 pages, 2007. · Zbl 1168.65433 · doi:10.1155/2007/89170
[14] H.-F. Liu, Y.-Z. Yang, Z.-H. Dai, and Z.-H. Yu, “The largest Lyapunov exponent of chaotic dynamical system in scale space and its application,” Chaos, vol. 13, no. 3, pp. 839-844, 2003. · Zbl 1080.37537 · doi:10.1063/1.1596556
[15] J. T. Bacmeister, S. D. Eckermann, P. A. Newman, et al., “Stratospheric horizontal wavenumber spectra of winds, potential temperature, and atmospheric tracers observed by high-altitude aircraft,” Journal of Geophysical Research D, vol. 101, no. D5, pp. 9441-9470, 1996. · doi:10.1029/95JD03835
[16] E. M. Dewan, “On the nature of atmospheric waves and turbulence,” Radio Science, vol. 20, no. 6, pp. 1301-1307, 1985. · doi:10.1029/RS020i006p01301
[17] F. Einaudi and J. J. Finnigan, “Wave-turbulence dynamics in the stably stratified boundary layer,” Journal of the Atmospheric Sciences, vol. 50, no. 13, pp. 1841-1864, 1993. · doi:10.1175/1520-0469(1993)050<1841:WTDITS>2.0.CO;2
[18] M. Humi, “Approximate simulation of stratospheric flow from aircraft data,” International Journal for Numerical Methods in Fluids, vol. 41, no. 2, pp. 209-223, 2003. · Zbl 1047.76020 · doi:10.1002/fld.437
[19] T. J. Duck and J. A. Whiteway, “The spectrum of waves and turbulence at the tropopause,” Geophysical Research Letters, vol. 32, no. 7, Article ID L07801, 2005. · doi:10.1029/2004GL021189
[20] C. Penland, M. Ghil, and K. M. Weickmann, “Adaptive filtering and maximum entropy spectra with application to changes in atmospheric angular momentum,” Journal of Geophysical Research, vol. 96, no. D12, pp. 22659-22671, 1991.
[21] M. B. Kennel, R. Brown, and H. D. I. Abarbanel, “Determining embedding dimension for phase-space reconstruction using a geometrical construction,” Physical Review A, vol. 45, no. 6, pp. 3403-3411, 1992. · doi:10.1103/PhysRevA.45.3403
[22] D. N. Axford, “Spectral analysis of an aircraft observation of gravity waves,” Quarterly Journal of the Royal Meteorological Society, vol. 97, pp. 313-321, 1971. · doi:10.1002/qj.49709741306
[23] S. Hipskind and S. Gains, “Airborne Arctic Stratospheric Expedition, NASA/VARP003 Appendix A: ER2 Meterorological Measurement Supplement 5Hz Data,” 5530-CDROM-283000, 1991.
[24] D. K. Lilly, “Numerical simulation of two-dimensional turbulence,” Physics of Fluids, vol. 12, no. 12, pp. 240-249, 1969. · Zbl 0263.76046 · doi:10.1063/1.1692444
[25] R. H. Kraichnan, “Inertial ranges in two-dimensional turbulence,” Physics of Fluids, vol. 10, no. 7, pp. 1417-1423, 1967. · doi:10.1063/1.1762301
[26] E. N. Lorenz, “Dimension of weather and climate attractors,” Nature, vol. 353, no. 6341, pp. 241-244, 1991. · doi:10.1038/353241a0