zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new adaptive local linear prediction method and its application in hydrological time series. (English) Zbl 1189.37089
Summary: The embedding dimension and the number of nearest neighbors are very important parameters in the prediction of a chaotic time series. In order to reduce the uncertainties in the determination of the forgoing two parameters, a new adaptive local linear prediction method is proposed in this study. In the new method, the embedding dimension and the number of nearest neighbors are combined as a parameter set and change adaptively in the process of prediction. The generalized degree of freedom is used to help select the optimal parameters. Real hydrological time series are taken to examine the performance of the new method. The prediction results indicate that the new method can choose the optimal parameters of embedding dimension and the nearest neighbor number adaptively in the prediction process. And the nonlinear hydrological time series perhaps could be modeled better by the new method.

MSC:
37M10Time series analysis (dynamical systems)
62M10Time series, auto-correlation, regression, etc. (statistics)
WorldCat.org
Full Text: DOI EuDML
References:
[1] G. B. Sahoo and S. G. Schladow, “Impacts of climate change on lakes and reservoirs dynamics and restoration policies,” Sustainability Science, vol. 3, no. 2, pp. 189-199, 2008. · doi:10.1007/s11625-008-0056-y
[2] C. A. Lin, L. Wen, G. Lu et al., “Real-time forecast of the 2005 and 2007 summer severe floods in the Huaihe River Basin of China,” Journal of Hydrology, vol. 381, no. 1-2, pp. 33-41, 2010. · doi:10.1016/j.jhydrol.2009.11.017
[3] C. Cattani and A. Kudreyko, “On the discrete harmonic wavelet transform,” Mathematical Problems in Engineering, vol. 2008, Article ID 687318, 7 pages, 2008. · Zbl 1166.65404 · doi:10.1155/2008/687318 · eudml:55809
[4] C. Cattani, “Harmonic wavelet approximation of random, fractal and high frequency signals,” Telecommunication Systems, vol. 43, no. 3-4, pp. 207-217, 2010. · doi:10.1007/s11235-009-9208-3
[5] M. Li and W. Zhao, “Representation of a stochastic traffic bound,” IEEE Transactions on Parallel and Distributed Systems. In press. · doi:10.1109/TPDS.2009.162
[6] M. Li, “Modeling autocorrelation functions of long-range dependent teletraffic series based on optimal approximation in Hilbert space-a further study,” Applied Mathematical Modelling, vol. 31, no. 3, pp. 625-631, 2007. · Zbl 1197.94006 · doi:10.1016/j.apm.2005.11.029
[7] M. Li and S. C. Lim, “Modeling network traffic using generalized Cauchy process,” Physica A, vol. 387, no. 11, pp. 2584-2594, 2008. · doi:10.1016/j.physa.2008.01.026
[8] M. Li and W. Zhao, “Variance bound of ACF estimation of one block of fGn with LRD,” Mathematical Problems in Engineering, vol. 2010, Article ID 560429, 14 pages, 2010. · Zbl 1191.94042 · doi:10.1155/2010/560429 · eudml:222804
[9] P. Shang, X. Na, and S. Kamae, “Chaotic analysis of time series in the sediment transport phenomenon,” Chaos, Solitons and Fractals, vol. 41, no. 1, pp. 368-379, 2009. · doi:10.1016/j.chaos.2008.01.014
[10] E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of the Atmospheric Sciences, vol. 20, pp. 130-141, 1963.
[11] R. M. May, “Simple mathematical models with very complicated dynamics,” Nature, vol. 261, no. 5560, pp. 459-467, 1976.
[12] M. Hénon, “A two-dimensional mapping with a strange attractor,” Communications in Mathematical Physics, vol. 50, no. 1, pp. 69-77, 1976. · Zbl 0576.58018 · doi:10.1007/BF01608556
[13] M. C. Mackey and L. Glass, “Oscillation and chaos in physiological control systems,” Science, vol. 197, no. 4300, pp. 287-289, 1977.
[14] E. N. Lorenz, “Atmospheric predictability as revealed by naturally occurring analogues,” Journal of the Atmospheric Sciences, vol. 26, no. 4, pp. 636-646, 1969.
[15] F. Takens, “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence, D. A. Rand and L. S. Young, Eds., vol. 898 of Lecture Notes in Mathematics, pp. 366-381, Springer, Berlin, Germany, 1981. · Zbl 0513.58032 · doi:10.1007/BFb0091924
[16] P. Grassberger and I. Procaccia, “Characterization of strange attractors,” Physical Review Letters, vol. 50, no. 5, pp. 346-349, 1983. · Zbl 0593.58024 · doi:10.1103/PhysRevLett.50.346
[17] G. B. Sahoo, S. G. Schladow, and J. E. Reuter, “Forecasting stream water temperature using regression analysis, artificial neural network, and chaotic non-linear dynamic models,” Journal of Hydrology, vol. 378, no. 3-4, pp. 325-342, 2009. · doi:10.1016/j.jhydrol.2009.09.037
[18] A. Hense, “On the possible existence of a strange attractor for the southern oscillation,” Beitraege zur Physik der Atmosphaere, vol. 60, no. 1, pp. 34-47, 1987.
[19] L. Cao, Y. Hong, H. Fang, and G. He, “Predicting chaotic time series with wavelet networks,” Physica D, vol. 85, no. 1-2, pp. 225-238, 1995. · Zbl 0888.93005 · doi:10.1016/0167-2789(95)00119-O
[20] J. D. Farmer and J. J. Sidorowich, “Predicting chaotic time series,” Physical Review Letters, vol. 59, no. 8, pp. 845-848, 1987. · doi:10.1103/PhysRevLett.59.845
[21] D. I. Jeong and Y.-O. Kim, “Combining single-value streamflow forecasts-a review and guidelines for selecting techniques,” Journal of Hydrology, vol. 377, no. 3-4, pp. 284-299, 2009. · doi:10.1016/j.jhydrol.2009.08.028
[22] H. D. I. Abarbanel, Analysis of Observed Chaotic Data, Institute for Nonlinear Science, Springer, New York, NY, USA, 2nd edition, 1996. · Zbl 0890.93006
[23] M. B. Kennel, R. Brown, and H. D. I. Abarbanel, “Determining embedding dimension for phase-space reconstruction using a geometrical construction,” Physical Review A, vol. 45, no. 6, pp. 3403-3411, 1992. · doi:10.1103/PhysRevA.45.3403
[24] Z. Aleksić, “Estimating the embedding dimension,” Physica D, vol. 52, no. 2-3, pp. 362-368, 1991. · Zbl 0856.54043 · doi:10.1016/0167-2789(91)90132-S
[25] L. Cao, “Practical method for determining the minimum embedding dimension of a scalar time series,” Physica D, vol. 110, no. 1-2, pp. 43-50, 1997. · Zbl 0925.62385 · doi:10.1016/S0167-2789(97)00118-8
[26] D. S. Broomhead and G. P. King, “Extracting qualitative dynamics from experimental data,” Physica D, vol. 20, no. 2-3, pp. 217-236, 1986. · Zbl 0603.58040 · doi:10.1016/0167-2789(86)90031-X
[27] R. Vautard, P. Yiou, and M. Ghil, “Singular-spectrum analysis: a toolkit for short, noisy chaotic signals,” Physica D, vol. 58, no. 1-4, pp. 95-126, 1992.
[28] A. I. Mees, P. E. Rapp, and L. S. Jennings, “Singular-value decomposition and embedding dimension,” Physical Review A, vol. 36, no. 1, pp. 340-346, 1987. · doi:10.1103/PhysRevA.36.340
[29] M. Palu\vs and I. Dvo\vrák, “Singular-value decomposition in attractor reconstruction: pitfalls and precautions,” Physica D, vol. 55, no. 1-2, pp. 221-234, 1992. · Zbl 0744.58046 · doi:10.1016/0167-2789(92)90198-V
[30] A. M. Fraser, “Reconstructing attractors from scalar time series: a comparison of singular system and redundancy criteria,” Physica D, vol. 34, no. 3, pp. 391-404, 1989. · Zbl 0709.94626 · doi:10.1016/0167-2789(89)90263-7
[31] Q.-F. Meng, Y.-H. Peng, and P.-J. Xue, “A new method of determining the optimal embedding dimension based on nonlinear prediction,” Chinese Physics, vol. 16, no. 5, pp. 1252-1257, 2007. · doi:10.1088/1009-1963/16/5/014
[32] A. W. Jayawardena, W. K. Li, and P. Xu, “Neighbourhood selection for local modelling and prediction of hydrological time series,” Journal of Hydrology, vol. 258, no. 1-4, pp. 40-57, 2002. · doi:10.1016/S0022-1694(01)00557-1
[33] X. H. Yang, D. X. She, Z. F. Yang, Q. H. Tang, and J. Q. Li, “Chaotic bayesian method based on multiple criteria decision making (MCDM) for forecasting nonlinear hydrological time series,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 10, no. 11-12, pp. 1595-1610, 2009.
[34] B. Sivakumar, A. W. Jayawardena, and T. M. Fernando, “River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches,” Journal of Hydrology, vol. 265, no. 1-4, pp. 225-245, 2002. · doi:10.1016/S0022-1694(02)00112-9
[35] J. Ye, “On measuring and correcting the effects of data mining and model selection,” Journal of the American Statistical Association, vol. 93, no. 441, pp. 120-131, 1998. · Zbl 0920.62056 · doi:10.2307/2669609