zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Parameters identification and synchronization of chaotic delayed systems containing uncertainties and time-varying delay. (English) Zbl 1189.37091
Summary: Time delays are ubiquitous in real world and are often sources of complex behaviors of dynamical systems. This paper addresses the problem of parameters identification and synchronization of uncertain chaotic delayed systems subject to time-varying delay. Firstly, a novel and systematic adaptive scheme of synchronization is proposed for delayed dynamical systems containing uncertainties based on Razumikhin condition and extended invariance principle for functional differential equations. Then, the proposed adaptive scheme is used to estimate the unknown parameters of nonlinear delayed systems from time series, and a sufficient condition is given by virtue of this scheme. The delayed system under consideration is a very generic one that includes almost all well-known delayed systems (neural network, complex networks, etc.). Two classical examples are used to demonstrate the effectiveness of the proposed adaptive scheme.

37M10Time series analysis (dynamical systems)
Full Text: DOI EuDML
[1] M. C. Mackey and L. Glass, “Oscillation and chaos in physiological control systems,” Science, vol. 197, no. 4300, pp. 287-289, 1977.
[2] K. Ikeda and K. Matsumoto, “High-dimensional chaotic behavior in systems with time-delayed feedback,” Physica D, vol. 29, no. 1-2, pp. 223-235, 1987. · Zbl 0626.58014 · doi:10.1016/0167-2789(87)90058-3
[3] L. P. Shayer and S. A. Campbell, “Stability, bifurcation, and multistability in a system of two coupled neurons with multiple time delays,” SIAM Journal on Applied Mathematics, vol. 61, no. 2, pp. 673-700, 2000. · Zbl 0992.92013 · doi:10.1137/S0036139998344015
[4] X. Liao and G. Chen, “Local stability, Hopf and resonant codimension-two bifurcation in a harmonic oscillator with two time delays,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 11, no. 8, pp. 2105-2121, 2001. · Zbl 1091.70502 · doi:10.1142/S0218127401003425
[5] J. Xu and P. Yu, “Delay-induced bifurcations in a nonautonomous system with delayed velocity feedbacks,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 14, no. 8, pp. 2777-2798, 2004. · Zbl 1074.34068 · doi:10.1142/S0218127404010989
[6] D. V. Ramana Reddy, A. Sen, and G. L. Johnston, “Time delay effects on coupled limit cycle oscillators at Hopf bifurcation,” Physica D, vol. 129, no. 1-2, pp. 15-34, 1999. · Zbl 0981.34022 · doi:10.1016/S0167-2789(99)00004-4
[7] Z. Sun, W. Xu, X. Yang, and T. Fang, “Inducing or suppressing chaos in a double-well Duffing oscillator by time delay feedback,” Chaos, Solitons and Fractals, vol. 27, no. 3, pp. 705-714, 2006. · Zbl 1091.93008 · doi:10.1016/j.chaos.2005.04.041
[8] J. D. Farmer, “Chaotic attractors of an infinite-dimensional dynamical system,” Physica D, vol. 4, no. 3, pp. 366-393, 1982. · Zbl 1194.37052 · doi:10.1016/0167-2789(82)90042-2
[9] P. Grassberger and I. Procaccia, “Measuring the strangeness of strange attractors,” Physica D, vol. 9, no. 1-2, pp. 189-208, 1983. · Zbl 0593.58024 · doi:10.1016/0167-2789(83)90298-1
[10] H. U. Voss, “Anticipating chaotic synchronization,” Physical Review E, vol. 61, no. 5, pp. 5115-5119, 2000.
[11] H. U. Voss, “Dynamic long-term anticipation of chaotic states,” Physical Review Letters, vol. 87, no. 1, Article ID 014102, 4 pages, 2001.
[12] C. Masoller and D. H. Zanette, “Anticipated synchronization in coupled chaotic maps with delays,” Physica A, vol. 300, no. 3-4, pp. 359-366, 2001. · Zbl 0973.37033 · doi:10.1016/S0378-4371(01)00362-4
[13] S. Sivaprakasam, E. M. Shahverdiev, P. S. Spencer, and K. A. Shore, “Experimental demonstration of anticipating synchronization in chaotic semiconductor lasers with optical feedback,” Physical Review Letters, vol. 87, no. 15, Article ID 154101, 3 pages, 2001.
[14] H. U. Voss, “Real-time anticipation of chaotic states of an electronic circuit,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 12, no. 7, pp. 1619-1625, 2002. · doi:10.1142/S0218127402005340
[15] T. Heil, I. Fischer, W. Elsässer, J. Mulet, and C. R. Mirasso, “Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers,” Physical Review Letters, vol. 86, no. 5, pp. 795-798, 2001. · doi:10.1103/PhysRevLett.86.795
[16] E. M. Shahverdiev and K. A. Shore, “Generalized synchronization in time-delayed systems,” Physical Review E, vol. 71, no. 1, Article ID 016201, 6 pages, 2005. · Zbl 1081.34074 · doi:10.1103/PhysRevE.71.016201
[17] J. Y. Chen, K. W. Wong, and J. W. Shuai, “Phase synchronization in coupled chaotic oscillators with time delay,” Physical Review E, vol. 66, no. 5, Article ID 056203, 7 pages, 2002. · doi:10.1103/PhysRevE.66.056203
[18] M. J. Bünner and W. Just, “Synchronization of time-delay systems,” Physical Review E, vol. 58, no. 4, pp. R4072-R4075, 1998.
[19] E. M. Shahverdiev, R. A. Nuriev, R. H. Hashimov, and K. A. Shore, “Chaos synchronization between the Mackey-Glass systems with multiple time delays,” Chaos, Solitons and Fractals, vol. 29, no. 4, pp. 854-861, 2006. · Zbl 1142.37330 · doi:10.1016/j.chaos.2005.08.128
[20] G.-P. Jiang, W. X. Zheng, and G. Chen, “Global chaos synchronization with channel time-delay,” Chaos, Solitons and Fractals, vol. 20, no. 2, pp. 267-275, 2004. · Zbl 1045.34021 · doi:10.1016/S0960-0779(03)00374-6
[21] E. M. Shahverdiev, R. A. Nuriev, R. H. Hashimov, and K. A. Shore, “Parameter mismatches, variable delay times and synchronization in time-delayed systems,” Chaos, Solitons and Fractals, vol. 25, no. 2, pp. 325-331, 2005. · Zbl 1081.34074 · doi:10.1016/j.chaos.2004.08.009
[22] C. P. Li, W. G. Sun, and J. Kurths, “Synchronization of complex dynamical networks with time delays,” Physica A, vol. 361, no. 1, pp. 24-34, 2006. · doi:10.1016/j.physa.2005.07.007
[23] W. Lu, T. Chen, and G. Chen, “Synchronization analysis of linearly coupled systems described by differential equations with a coupling delay,” Physica D, vol. 221, no. 2, pp. 118-134, 2006. · Zbl 1111.34056 · doi:10.1016/j.physd.2006.07.020
[24] H. J. Gao, J. Lam, and G. Chen, “New criteria for synchronization stability of general complex dynamical networks with coupling delays,” Physics Letters A, vol. 360, no. 2, pp. 263-273, 2006. · Zbl 1236.34069
[25] Z. Li, G. Feng, and D. Hill, “Controlling complex dynamical networks with coupling delays to a desired orbit,” Physics Letters A, vol. 359, no. 1, pp. 42-46, 2006. · Zbl 1209.93136 · doi:10.1016/j.physleta.2006.05.085
[26] J.-J. Yan, J.-S. Lin, M.-L. Hung, and T.-L. Liao, “On the synchronization of neural networks containing time-varying delays and sector nonlinearity,” Physics Letters A, vol. 361, no. 1-2, pp. 70-77, 2007. · Zbl 1170.34334 · doi:10.1016/j.physleta.2006.08.083
[27] J. Cao and J. Lu, “Adaptive synchronization of neural networks with or without time-varying delay,” Chaos, vol. 16, no. 1, Article ID 013133, 6 pages, 2006. · Zbl 1144.37331 · doi:10.1063/1.2178448
[28] D. Huang and R. Guo, “Identifying parameter by identical synchronization between different systems,” Chaos, vol. 14, no. 1, pp. 152-159, 2004. · Zbl 1080.37092 · doi:10.1063/1.1635095
[29] D. Huang, “Synchronization-based estimation of all parameters of chaotic systems from time series,” Physical Review E, vol. 69, no. 6, Article ID 067201, 4 pages, 2004. · doi:10.1103/PhysRevE.69.067201
[30] H. B. Fotsin and J. Daafouz, “Adaptive synchronization of uncertain chaotic colpitts oscillators based on parameter identification,” Physics Letters A, vol. 339, no. 3-5, pp. 304-315, 2005. · Zbl 1145.93313 · doi:10.1016/j.physleta.2005.03.049
[31] O. Pashaev and G. Tano\uglu, “Vector shock soliton and the Hirota bilinear method,” Chaos, Solitons and Fractals, vol. 26, no. 1, pp. 95-105, 2005. · Zbl 1070.35056 · doi:10.1016/j.chaos.2004.12.021
[32] Y. Orlov, L. Belkoura, J. P. Richard, and M. Dambrine, “Identifiability analysis of linear time-delay systems,” in Proceedings of the 40th IEEE Conference on Decision and Control, vol. 5, pp. 4776-4781, Orlando, Fla, USA, December 2001.
[33] S. M. Verduyn Lunel, “Identification problems in functional differential equations,” in Proceedings of the 36th IEEE Conference on Decision and Control, vol. 5, pp. 4409-4413, San Diego, Calif, USA, December 1997.
[34] Y. Orlov, L. Belkoura, J. P. Richard, and M. Dambrine, “On identifiability of linear time-delay systems,” IEEE Transactions on Automatic Control, vol. 47, no. 8, pp. 1319-1324, 2002. · doi:10.1109/TAC.2002.801202
[35] G. Ferretti, C. Maffezzoni, and R. Scattolini, “On the identifiability of the time delay with least-squares methods,” Automatica, vol. 32, no. 3, pp. 449-453, 1996. · Zbl 0850.93174 · doi:10.1016/0005-1098(95)00172-7
[36] Y. Orlov, L. Belkoura, J. P. Richard, and M. Dambrine, “On-line parameter identification of linear time-delay systems,” in Proceedings of the 41st IEEE Conference on Decision and Control, vol. 1, pp. 630-635, Las Vegas, Nev, USA, December 2002.
[37] J. Zhang, X. Xia, and C. H. Moog, “Parameter identifiability of nonlinear systems with time-delay,” IEEE Transactions on Automatic Control, vol. 51, no. 2, pp. 371-375, 2006. · doi:10.1109/TAC.2005.863497
[38] K. A. Murphy, “Estimation of time- and state-dependent delays and other parameters in functional-differential equations,” SIAM Journal on Applied Mathematics, vol. 50, no. 4, pp. 972-1000, 1990. · Zbl 0701.65052 · doi:10.1137/0150060
[39] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional-Differential Equations, vol. 99 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1993. · Zbl 0787.34002
[40] K. Ikeda, “Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system,” Optics Communications, vol. 30, no. 2, pp. 257-261, 1979.
[41] B. Kosko, “Bidirectional associative memories,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 18, no. 1, pp. 49-60, 1988. · doi:10.1109/21.87054
[42] L. O. Chua and L. Yang, “Cellular neural networks: theory,” IEEE Transactions on Circuits and Systems, vol. 35, no. 10, pp. 1257-1272, 1988. · Zbl 0663.94022 · doi:10.1109/31.7600
[43] D. Ghosh, A. R. Chowdhury, and P. Saha, “Multiple delay Rössler system-Bifurcation and chaos control,” Chaos, Solitons and Fractals, vol. 35, no. 3, pp. 472-485, 2008. · Zbl 1139.34059 · doi:10.1016/j.chaos.2006.05.058
[44] F. Zheng, Q.-G. Wang, and T. H. Lee, “Adaptive robust control of uncertain time delay systems,” Automatica, vol. 41, no. 8, pp. 1375-1383, 2005. · Zbl 1086.93029 · doi:10.1016/j.automatica.2005.03.014