zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analysis of large-amplitude pulses in short time intervals: application to neuron interactions. (English) Zbl 1189.37099
Summary: This paper deals with the analysis of a nonlinear dynamical system which characterizes the axons interaction and is based on a generalization of FitzHugh-Nagumo system. The parametric domain of stability is investigated for both the linear and third-order approximation. A further generalization is studied in presence of high-amplitude (time-dependent) pulse. The corresponding numerical solution for some given values of parameters are analyzed through the wavelet coefficients, showing both the sensitivity to local jumps and some unexpected inertia of neuron’s as response to the high-amplitude spike.

37N25Dynamical systems in biology
92B20General theory of neural networks (mathematical biology)
Full Text: DOI EuDML
[1] S. El Boustani, M. Pospischil, M. Rudolph-Lilith, and A. Destexhe, “Activated cortical states: experiments, analyses and models,” Journal of Physiology Paris, vol. 101, no. 1-3, pp. 99-109, 2007. · doi:10.1016/j.jphysparis.2007.10.001
[2] R. Fitzhugh, “Impulses and physiological states in theoretical models of nerve membrane,” Biophysical Journal, vol. 1, pp. 455-466, 1961.
[3] N. V. Georgiev, “Identifying generalized Fitzhugh-Nagumo equation from a numerical solution of Hodgkin-Huxley model,” Journal of Applied Mathematics, no. 8, pp. 397-407, 2003. · Zbl 1077.37524 · doi:10.1155/S1110757X03211037 · eudml:51886
[4] J. Guckenheimer and I. S. Labouriau, “Bifurcation of the Hodgkin and Huxley equations: a new twist,” Bulletin of Mathematical Biology, vol. 55, no. 5, pp. 937-952, 1993. · Zbl 0778.92007 · doi:10.1007/BF02460693
[5] B. Hassard, “Bifurcation of periodic solutions of the Hodgkin-Huxley model for the squid giant axon,” Journal of Theoretical Biology, vol. 71, no. 3, pp. 401-420, 1978.
[6] A. L. Hodgkin and A. F. Huxley, “Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo,” The Journal of Physiology, vol. 116, pp. 449-472, 1952.
[7] A. L. Hodgkin and A. F. Huxley, “The components of membrane conductance in the giant axon of Loligo,” The Journal of Physiology, vol. 116, no. 4, pp. 473-496, 1952.
[8] A. L. Hodgkin and A. F. Huxley, “The dual effect of membrane potential on sodium conductance in the giant axon of Loligo,” The Journal of Physiology, vol. 116, pp. 497-506, 1952.
[9] J. Nagumo, S. Arimoto, and S. Yoshizawa, “An active pulse transmission line simulating nerve axon,” Proceedings of the IRE, vol. 50, no. 10, pp. 2061-2070, 1962.
[10] J. Rinzel and R. N. Miller, “Numerical calculation of stable and unstable periodic solutions to the Hodgkin-Huxley equations,” Mathematical Biosciences, vol. 49, no. 1-2, pp. 27-59, 1980. · Zbl 0429.92014 · doi:10.1016/0025-5564(80)90109-1
[11] J. Wang, L. Chen, and X. Fei, “Analysis and control of the bifurcation of Hodgkin-Huxley model,” Chaos, Solitons and Fractals, vol. 31, no. 1, pp. 247-256, 2007. · Zbl 1140.37370 · doi:10.1016/j.chaos.2005.09.060
[12] G. Mattioli and M. Scalia, “Modelling hodgkin-huxley neurons interaction,” in Proceedings of the International Conference on Computational Science and Its Applications (ICCSA ’09), vol. 5592 of Lecture Notes in Computer Science, pp. 745-751, 2009. · doi:10.1007/978-3-642-02454-2_57
[13] C. Cattani and J. Rushchitsky, Wavelet and Wave Analysis as Applied to Materials with Micro or Nanostructure, vol. 74 of Series on Advances in Mathematics for Applied Sciences, World Scientific, Hackensack, NJ, USA, 2007. · Zbl 1152.74001
[14] C. Cattani, “Haar wavelet-based technique for sharp jumps classification,” Mathematical and Computer Modelling, vol. 39, no. 2-3, pp. 255-278, 2004. · Zbl 1046.94504 · doi:10.1016/S0895-7177(04)90010-6