Durand, Arnaud Random fractals and tree-indexed Markov chains. (English) Zbl 1189.60030 Rev. Mat. Iberoam. 25, No. 3, 1089-1126 (2009). Author’s abstract: We study the size properties of a general model of fractal sets that are based on a tree-indexed family of random compacts and a tree-indexed Markov chain. These fractals may be regarded as a generalization of those resulting from the Moran-like deterministic or random recursive construction considered by various authors. Among other applications, we consider various extensions of Mandelbrot’s fractal percolation process. Reviewer: Ilya S. Molchanov (Bern) Cited in 4 Documents MSC: 60D05 Geometric probability and stochastic geometry 28A80 Fractals 60J10 Markov chains (discrete-time Markov processes on discrete state spaces) 60J80 Branching processes (Galton-Watson, birth-and-death, etc.) Keywords:Hausdorff dimension; random recursive construction of fractals; tree-indexed Markov chain; branching processes in varying environment × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Agresti, A.: On the extinction times of varying and random environment branching processes. J. Appl. Probability 12 (1975), 39-46. JSTOR: · Zbl 0306.60052 · doi:10.2307/3212405 [2] Arbeiter, M.: Random recursive construction of self-similar fractal measures. Probab. Theory Related Fields 88 (1991), no. 4, 497-520. · Zbl 0723.60040 · doi:10.1007/BF01192554 [3] Benjamini, I. and Peres, Y.: Markov chains indexed by trees. Ann. Probab. 22 (1994), no. 1, 219-243. · Zbl 0793.60080 · doi:10.1214/aop/1176988857 [4] Berlinkov, A.: Exact packing dimension in random recursive constructions. Probab. Theory Related Fields 126 (2003), no.4, 477-496. · Zbl 1037.28004 · doi:10.1007/s00440-003-0281-3 [5] Berlinkov, A. and Mauldin, R. D.: Packing measure and dimension of random fractals. J. Theoret. Probab. 15 (2002), no. 3, 695-713. · Zbl 1010.60010 · doi:10.1023/A:1016271916074 [6] Bollobás, B.: Modern graph theory . Graduate Texts in Mathematics 184 . Springer-Verlag, New York, 1998. · Zbl 0902.05016 [7] Chayes, J. T., Chayes, L. and Durrett, R.: Connectivity properties of Mandelbrot’s percolation process. Probab. Theory Related Fields 77 (1988), no. 3, 307-324. · Zbl 0621.60110 · doi:10.1007/BF00319291 [8] Chayes, L.: Aspects of the fractal percolation process. In Fractal geometry and stochastics (Finsterbergen, 1994) , 113-143. Progr. Probab. 37 . Birkhäuser, Basel, 1995. · Zbl 0844.60091 [9] Chayes, L., Pemantle, R. and Peres, Y.: No directed fractal percolation in zero area. J. Statist. Phys. 88 (1997), no. 5-6, 1353-1362. · Zbl 0939.82023 · doi:10.1007/BF02732437 [10] Dekking, F. M. and Meester, R.: On the structure of Mandelbrot’s percolation process and other random Cantor sets. J. Statist. Phys. 58 (1990), no. 5-6, 1109-1126. · Zbl 0714.60102 · doi:10.1007/BF01026566 [11] Dienes, P.: The Taylor series: an introduction to the theory of functions of a complex variable . Dover Publications, New York, 1957. · Zbl 0078.05901 [12] Doob, J. L.: Classical potential theory and its probabilistic counterpart . Fundamental Principles of Mathematical Sciences 262 . Springer-Verlag, New York, 1984. · Zbl 0549.31001 [13] Dryakhlov, A. V. and Tempelman, A. A.: On Hausdorff dimension of random fractals. New York J. Math. 7 (2001), 99-115. · Zbl 1015.54017 [14] D’Souza, J. C.: The rates of growth of the Galton-Watson process in varying environments. Adv. in Appl. Probab. 26 (1994), no. 3, 698-714. JSTOR: · Zbl 0803.60083 · doi:10.2307/1427816 [15] D’Souza, J. C. and Biggins, J. D.: The supercritical Galton-Watson process in varying environments. Stochastic Process. Appl. 42 (1992), no. 1, 39-47. · Zbl 0758.60088 · doi:10.1016/0304-4149(92)90025-L [16] Durand, A.: Random wavelet series based on a tree-indexed Markov chain. Comm. Math. Phys. 283 (2008), no. 2, 451-477. · Zbl 1157.42009 · doi:10.1007/s00220-008-0504-7 [17] Falconer, K. J.: Random fractals. Math. Proc. Cambridge Philos. Soc. 100 (1986), no. 3, 559-582. · Zbl 0623.60020 · doi:10.1017/S0305004100066299 [18] Falconer, K. J.: The multifractal spectrum of statistically self-similar measures. J. Theoret. Probab. 7 (1994), no. 3, 681-702. · Zbl 0805.60034 · doi:10.1007/BF02213576 [19] Falconer, K. J.: Fractal geometry. Mathematical foundations and applications . Seconnd edition. John Wiley & Sons, Hoboken, NJ, 2003. · Zbl 1060.28005 [20] Ford, L. R. and Fulkerson, D. R.: Flows in networks . Princeton University Press, Princeton, NJ, 1962. · Zbl 0106.34802 [21] Fujimagari, T.: On the extinction time distribution of a branching process in varying environments. Adv. in Appl. Probab. 12 (1980), no. 2, 350-366. JSTOR: · Zbl 0425.60070 · doi:10.2307/1426601 [22] Graf, S.: Statistically self-similar fractals. Probab. Theory Related Fields 74 (1987), no. 3, 357-392. · Zbl 0591.60005 · doi:10.1007/BF00699096 [23] Graf, S., Mauldin, R. D. and Williams, S. C.: The exact Hausdorff dimension in random recursive constructions. Mem. Amer. Math. Soc. 71 (1988), no. 381. · Zbl 0641.60003 [24] Hutchinson, J. E.: Fractals and self-similarity. Indiana Univ. Math. J. 30 (1981), no. 5, 713-747. · Zbl 0598.28011 · doi:10.1512/iumj.1981.30.30055 [25] Hutchinson, J. E. and Rüschendorff, L.: Random fractal measures via the contraction method. Indiana Univ. Math. J. 47 (1998), no. 2, 471-487. · Zbl 0929.28008 · doi:10.1512/iumj.1998.47.1461 [26] Jagers, P.: Galton-Watson processes in varying environments. J. Appl. Probability 11 (1974), 174-178. JSTOR: · Zbl 0277.60061 · doi:10.2307/3212594 [27] Kifer, Y.: Fractals via random iterated function systems and random geometric constructions . In Fractal geometry and stochastics (Finsterbergen, 1994) , 145-164. Progr. Probab. 37 . Birkhäuser, Basel, 1995. · Zbl 0866.60020 [28] Kifer, Y.: Fractal dimensions and random transformations. Trans. Amer. Math. Soc. 348 (1996), no. 5, 2003-2038. JSTOR: · Zbl 0874.28009 · doi:10.1090/S0002-9947-96-01608-X [29] Kleene, S. C.: Mathematical logic . Reprint of the 1967 original. Dover Publications, Mineola, NY, 2002. [30] Lindvall, T.: Almost sure convergence of branching processes in varying and random environments. Ann. Probab. 2 (1974), 344-346. · Zbl 0278.60057 · doi:10.1214/aop/1176996717 [31] Liu, Y.-Y., Wen, Z.-Y. and Wu, J.: Generalized random recursive constructions and geometric properties of random fractals. Math. Nachr. 267 (2004), 65-76. · Zbl 1047.60007 · doi:10.1002/mana.200310153 [32] Lyons, R.: Random walks, capacity and percolation on trees. Ann. Probab. 20 (1992), no. 4, 2043-2088. · Zbl 0766.60091 · doi:10.1214/aop/1176989540 [33] Lyons, R. and Peres, Y.: Probability on trees and networks . Available at http://php.indiana.edu/ rdlyons/prbtree/book.pdf. [34] MacPhee, I. M. and Schuh, H. J.: A Galton-Watson branching process in varying environments with essentially constant offspring means and two rates of growth. Austral. J. Statist. 25 (1983), no. 2, 329-338. · Zbl 0536.60084 · doi:10.1111/j.1467-842X.1983.tb00386.x [35] Mandelbrot, B.: The fractal geometry of nature . W. H. Freeman, San Francisco, Calif., 1982. · Zbl 0504.28001 [36] Mauldin, R. D. and Williams, S. C.: Random recursive constructions: asymptotic geometric and topological properties. Trans. Amer. Math. Soc. 295 (1986), no. 1, 325-346. JSTOR: · Zbl 0625.54047 · doi:10.2307/2000159 [37] Moran, P. A. P.: Additive functions of intervals and Hausdorff measure. Proc. Cambridge Philos. Soc. 42 (1946), 15-23. · Zbl 0063.04088 · doi:10.1017/S0305004100022684 [38] Olsen, L.: Random geometrically graph directed self-similar multifractals . Pitman Research Notes in Mathematics Series 307 . Longman Scientific & Technical, Harlow, 1994. · Zbl 0801.28002 [39] Pesin, Y. and Weiss, H.: On the dimension of deterministic and random Cantor-like sets, symbolic dynamics, and the Echmann-Ruelle conjecture. Comm. Math. Phys. 182 (1996), no. 1, 105-153. · Zbl 0878.28006 · doi:10.1007/BF02506387 [40] Rogers, C. A.: Hausdorff measures . Cambridge University Press, Cambridge, 1970. · Zbl 0204.37601 [41] Taylor, S. J.: The \(\alpha\)-dimensional measure of the graph and set of zeros of a Brownian path. Proc. Cambridge Philos. Soc. 51 (1955), 265-274. · Zbl 0064.05201 · doi:10.1017/S030500410003019X This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.