Yu, Yaming Monotonic convergence of a general algorithm for computing optimal designs. (English) Zbl 1189.62125 Ann. Stat. 38, No. 3, 1593-1606 (2010). Summary: Monotonic convergence is established for a general class of multiplicative algorithms introduced by S. D. Silvey, D.M. Titterington and B. Torsney [Commun. Stat., Theory Methods A7, 1379–1389 (1978; Zbl 0389.62061)] for computing optimal designs. A conjecture of D. M. Titterington [J. R. Stat. Soc., Ser. C 27, 227–234 (1978; Zbl 0436.62062)] is confirmed as a consequence. Optimal designs for logistic regression are used as an illustration. Cited in 44 Documents MSC: 62K05 Optimal statistical designs 65C60 Computational problems in statistics (MSC2010) Keywords:A-optimality; auxiliary variables; c-optimality; D-optimality; experimental design; generalized linear models; multiplicative algorithm Citations:Zbl 0389.62061; Zbl 0436.62062 × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Atwood, C. L. (1973). Sequences converging to D-optimal designs of experiments. Ann. Statist. 1 342-352. · Zbl 0263.62047 · doi:10.1214/aos/1176342371 [2] Chaloner, K. and Larntz, K. (1989). Optimal Bayesian design applied to logistic regression experiments. J. Statist. Plann. Inference 21 191-208. · Zbl 0666.62073 · doi:10.1016/0378-3758(89)90004-9 [3] Chaloner, K. and Verdinelli, I. (1995). Bayesian experimental design: A review. Statist. Sci. 10 273-304. · Zbl 0955.62617 · doi:10.1214/ss/1177009939 [4] Chernoff, H. (1953). Locally optimal design for estimating parameters. Ann. Math. Statist. 24 586-602. · Zbl 0053.10504 · doi:10.1214/aoms/1177728915 [5] Csiszár, I. and Tusnady, G. (1984). Information geometry and alternating minimization procedures. Statist. Decisions (Suppl. 1) 205-237. · Zbl 0547.60004 [6] Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. Roy. Statist. Soc. Ser. B 39 1-38. JSTOR: · Zbl 0364.62022 [7] Dette, H., Pepelyshev, A. and Zhigljavsky, A. (2008). Improving updating rules in multiplicative algorithms for computing D-optimal designs. Comput. Statist. Data Anal. 53 312-320. · Zbl 1231.62141 · doi:10.1016/j.csda.2008.10.002 [8] Fedorov, V. V. (1972). Theory of Optimal Experiments . Academic Press, New York. · Zbl 0261.62002 [9] Fellman, J. (1974). On the allocation of linear observations (Thesis). Soc. Sci. Fenn. Comment. Phys.-Math. 44 27-78. · Zbl 0303.62062 [10] Fellman, J. (1989). An empirical study of a class of iterative searches for optimal designs. J. Statist. Plann. Inference 21 85-92. [11] Harman, R. and Pronzato, L. (2007). Improvements on removing nonoptimal support points in D-optimum design algorithms. Statist. Probab. Lett. 77 90-94. · Zbl 1106.62080 · doi:10.1016/j.spl.2006.05.014 [12] Harman, R. and Trnovská, M. (2009). Approximate D-optimal designs of experiments on the convex hull of a finite set of information matrices. Math. Slovaca 59 693-704. · Zbl 1211.62128 · doi:10.2478/s12175-009-0157-9 [13] Kiefer, J. (1974). General equivalence theory for optimum designs (approximate theory). Ann. Statist. 2 849-879. · Zbl 0291.62093 · doi:10.1214/aos/1176342810 [14] Kiefer, J. and Wolfowitz, J. (1960). The equivalence of two extremum problems. Canad. J. Math. 12 363-366. · Zbl 0093.15602 · doi:10.4153/CJM-1960-030-4 [15] Li, G. and Majumdar, D. (2008). D-optimal designs for logistic models with three and four parameters. J. Statist. Plann. Inference 138 1950-1959. · Zbl 1134.62054 · doi:10.1016/j.jspi.2007.07.010 [16] Meng, X.-L. and van Dyk, D. (1997). The EM algorithm-an old folk-song sung to a fast new tune (with discussion). J. Roy. Statist. Soc. Ser. B 59 511-567. JSTOR: · Zbl 1090.62518 · doi:10.1111/1467-9868.00082 [17] Pázman, A. (1986). Foundations of Optimum Experimental Design . Reidel, Dordrecht. · Zbl 0588.62117 [18] Pronzato, L., Wynn, H. and Zhigljavsky, A. (2000). Dynamical Search: Applications of Dynamical Systems in Search and Optimization . Chapman & Hall/CRC, Boca Raton. · Zbl 1053.90102 [19] Pukelsheim, F. (1993). Optimal Design of Experiments . Wiley, New York. · Zbl 0834.62068 [20] Pukelsheim, F. and Torsney, B. (1991). Optimal weights for experimental designs on linearly independent support points. Ann. Statist. 19 1614-1625. · Zbl 0729.62063 · doi:10.1214/aos/1176348265 [21] Silvey, S. D. (1980). Optimal Design . Chapman & Hall, London. · Zbl 0468.62070 [22] Silvey, S. D., Titterington, D. M. and Torsney, B. (1978). An algorithm for optimal designs on a finite design space. Comm. Statist. Theory Methods 14 1379-1389. · Zbl 0389.62061 · doi:10.1080/03610927808827719 [23] Titterington, D. M. (1976). Algorithms for computing D-optimal design on finite design spaces. In Proc. of the 1976 Conf. on Information Science and Systems 3 213-216. John Hopkins Univ. [24] Titterington, D. M. (1978). Estimation of correlation coefficients by ellipsoidal trimming. J. Appl. Stat. 27 227-234. · Zbl 0436.62062 · doi:10.2307/2347157 [25] Torsney, B. (1983). A moment inequality and monotonicity of an algorithm. In Proceedings of the International Symposium on Semi-Infinite Programming and Appl. (K. O. Kortanek and A. V. Fiacco, eds.). Lecture Notes in Economics and Mathematical Systems 215 249-260. Springer, Berlin. · Zbl 0512.90082 [26] Torsney, B. (2007). W-iterations and ripples therefrom. In Optimal Design and Related Areas in Optimization and Statistics (L. Pronzato and A. Zhigljavsky, eds.) 1-12. Springer, New York. · Zbl 1192.62183 · doi:10.1007/978-0-387-79936-0_1 [27] Torsney, B. and Mandal, S. (2006). Two classes of multiplicative algorithms for constructing optimizing distributions. Comput. Statist. Data Anal. 51 1591-1601. · Zbl 1157.62330 · doi:10.1016/j.csda.2006.05.014 [28] Torsney, B. and Martín-Martín, R. (2009). Multiplicative algorithms for computing optimum designs. J. Statist. Plann. Inference 139 3947-3961. · Zbl 1190.62138 · doi:10.1016/j.jspi.2009.05.007 [29] Whittle, P. (1973). Some general points in the theory of optimal experimental design. J. Roy. Statist. Soc. Ser. B 35 123-130. JSTOR: · Zbl 0282.62065 [30] Wu, C. F. and Wynn, H. P. (1978). The convergence of general step-length algorithms for regular optimum design criteria. Ann. Statist. 6 1273-1285. · Zbl 0396.62059 · doi:10.1214/aos/1176344373 [31] Wynn, H. P. (1972). Results in the theory and construction of D-optimum experimental designs. J. Roy. Statist. Soc. Ser. B 34 133-147. JSTOR: · Zbl 0248.62033 [32] Yu, Y. (2008). A bit of information theory, and the data augmentation algorithm converges. IEEE Trans. Inform. Theory 54 5186-5188. · Zbl 1319.60154 · doi:10.1109/TIT.2008.929918 [33] Yu, Y. (2009). Monotonic convergence of a general algorithm for computing optimal designs (extended version). Technical report. Available at This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.