Reich, Brian J.; Bandyopadhyay, Dipankar A latent factor model for spatial data with informative missingness. (English) Zbl 1189.62175 Ann. Appl. Stat. 4, No. 1, 439-459 (2010). Summary: A large amount of data is typically collected during a periodontal exam. Analyzing these data poses several challenges. Several types of measurements are taken at many locations throughout the mouth. These spatially-referenced data are a mix of binary and continuous responses, making joint modeling difficult. Also, most patients have missing teeth. Periodontal disease is a leading cause of tooth loss, so it is likely that the number and location of missing teeth informs about the patient’s periodontal health.We develop a multivariate spatial framework for these data which jointly models the binary and continuous responses as a function of a single latent spatial process representing general periodontal health. We also use the latent spatial process to model the location of missing teeth. We show using simulated and real data that exploiting spatial associations and jointly modeling the responses and locations of missing teeth mitigates the problems presented by these data. Cited in 18 Documents MSC: 62P10 Applications of statistics to biology and medical sciences; meta analysis 92C50 Medical applications (general) 62H11 Directional data; spatial statistics 65C60 Computational problems in statistics (MSC2010) 62M30 Inference from spatial processes Keywords:binary spatial data; informative cluster size; multivariate data; periodontal data; probit regression; shared parameter model Software:spBayes × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Banerjee, S., Carlin, B. P. and Gelfand, A. E. (2004). Hierarchical Modeling and Analysis for Spatial Data , 1st ed. Chapman & Hall/CRC, Boca Raton, FL. · Zbl 1053.62105 [2] Benhin, E., Rao, J. N. K. and Scott, A. J. (2005). Mean estimating equation approach to analysing cluster-correlated data with nonignorable cluster sizes. Biometrika 92 435-450. · Zbl 1094.62078 · doi:10.1093/biomet/92.2.435 [3] Besag, J., York, J. C. and Mollié, A. (1991). Bayesian image restoration, with two applications in spatial statistics (with discussion). Ann. Inst. Statist. Math. 43 1-59. · Zbl 0760.62029 · doi:10.1007/BF00116466 [4] Beunckens, C., Molenberghs, G., Verkeke, G. and Mallinchrodt, C. (2008). A latent-class mixture model for incomplete longitudinal Gaussian data. Biometrics 64 96-105. · Zbl 1274.62721 · doi:10.1111/j.1541-0420.2007.00837.x [5] Cong, X. J., Yin, G. and Shen, Y. (2007). Marginal analysis of correlated failure time data with informative cluster sizes. Biometrics 63 663-672. · Zbl 1147.62091 · doi:10.1111/j.1541-0420.2006.00730.x [6] Darby, M. L. and Walsh, M. M. (1995). Dental Hygiene: Theory and Practice , 1st ed. W. B. Saunders, Philadelphia, PA. [7] Dunson, D. B., Chen, Z. and Harry, J. (2003). A Bayesian approach for joint modeling of cluster size and subunit-specific outcomes. Biometrics 59 521-530. · Zbl 1210.62023 · doi:10.1111/1541-0420.00062 [8] Faria-Almeida, R., Navarro, A. and Bascones, A. (2006). Clinical and metabolic changes after conventional treatment of Type-2 diabetic patients with chronic periodontitis. Journal of Periodontology 77 591-598. [9] Fernandez, J. K., Wiegand, R. E., Salinas, C. F., Grossi, S. G., Sanders, J. J., Lopes-Virella, M. F. and Slate, E. H. (2009). Periodontal disease status in Gullah African Americans with Type 2 diabetics living in South Carolina. Journal of Periodontology 80 1062-1068. [10] Follman, D. and Wu, M. C. (1995). An approximate generalized linear model with random effects and informative missing data. Biometrics 51 151-168. · Zbl 0825.62607 · doi:10.2307/2533322 [11] Follman, D., Proschan, M. and Leifer, E. (2003). Multiple outputation: Inference for complex clustered data by averaging analyses from independent data. Biometrics 59 420-429. · Zbl 1210.62158 · doi:10.1111/1541-0420.00049 [12] Gelfand, A. E., Kottas, A. and MacEachern, S. N. (2005). Bayesian nonparametric spatial modeling with Dirichlet process mixing. J. Amer. Statist. Assoc. 100 1021-1035. · Zbl 1117.62342 · doi:10.1198/016214504000002078 [13] Ghosh, J. and Dunson, D. B. (2008). Bayesian model selection in factor analytic models. In Random Effect and Latent Variable Model Selection (D. B. Dunson, ed.) 151-164. Wiley, New York. [14] Griffin, J. E. and Steel, M. F. J. (2006). Order-based dependent Dirichlet processes. J. Amer. Statist. Assoc. 101 179-194. · Zbl 1118.62360 · doi:10.1198/016214505000000727 [15] Hoffman, E. B., Sen, P. K. and Weinberg, C. R. (2001). Within-cluster resampling. Biometrika 88 1121-1134. · Zbl 0986.62047 · doi:10.1093/biomet/88.4.1121 [16] Hogan, J. W. and Tchernis, R. (2004). Bayesian factor analysis for spatially correlated data, with application to summarizing area-level material deprivation from census data. J. Amer. Statist. Assoc. 99 314-324. · Zbl 1117.62354 · doi:10.1198/016214504000000296 [17] Lin, H., McCulloch, C. E., Turnbull, B. W., Slate, E. and Clark, L. (2000). A latent class mixed model for analysing biomarker trajectories with irregularly scheduled observations. Stat. Med. 19 1303-1318. [18] Lopes, H. F., Salazar, E. and Gamerman, D. (2008). Spatial dynamic factor analysis. Bayesian Anal. 3 759-792. · Zbl 1330.62356 · doi:10.1214/08-BA329 [19] Lu, W. (2005). Marginal regression of multivariate event times based on linear transformation models. Lifetime Data Anal. 11 389-404. · Zbl 1099.62114 · doi:10.1007/s10985-005-2969-4 [20] Oliver, R. C., Brown, L. J. and Loe, H. (1998). Periodontal diseases in the United States population. Journal of Periodontology 69 269-278. [21] Panageas, K. S., Schrag, D., Localio, A. R., Venkatraman, E. S. and Begg, C. B. (2007). Properties of analysis methods that account for clustering in volume-outcome studies when the primary predictor is cluster size. Stat. Med. 26 2017-2035. · doi:10.1002/sim.2657 [22] Reich, B. J. and Bandyopadhyay, D. (2009). Supplement to “A latent factor model for spatial data with informative missingness.” DOI: . · Zbl 1189.62175 · doi:10.1214/09-AOAS278 [23] Reich, B. J. and Fuentes, M. (2007). A multivariate semiparametric Bayesian spatial modeling framework for hurricane surface wind fields. Ann. Appl. Statist. 1 249-264. · Zbl 1129.62114 · doi:10.1214/07-AOAS108 [24] Reich, B. J. and Hodges, J. S. (2008). Modeling longitudinal spatial periodontal data: A spatially-adaptive model with tools for specifying priors and checking fit. Biometrics 64 790-799. · Zbl 1170.62399 · doi:10.1111/j.1541-0420.2007.00956.x [25] Salazar, E., Gamerman, D. and Lopes, H. F. (2009). Generalized spatial dynamic factor analysis. Technical report, Univ. Chicago. · Zbl 1330.62356 · doi:10.1214/08-BA329 [26] Song, X., Davidian, M. and Tsiatis, A. A. (2002). A semiparametric likelihood approach to joint modeling of longitudinal and time to event data. Biometrics 58 742-753. · Zbl 1210.62132 · doi:10.1111/j.0006-341X.2002.00742.x [27] Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). J. Roy. Statist. Soc. Ser. B 64 583-639. · Zbl 1067.62010 · doi:10.1111/1467-9868.00353 [28] Taylor, G. W. and Borgnakke, W. S. (2008). Periodontal disease: Associations with diabetes, glycemic control and complications. Oral Diseases 14 191-203. [29] Tsonaka, R., Verbeke, G. and Lesaffre, E. (2009). A semi-parametric shared parameter model to handle nonmonotone nonignorable missingness. Biometrics 65 81-87. · Zbl 1159.62083 · doi:10.1111/j.1541-0420.2008.01021.x [30] Wang, F. and Wall, M. (2003). Generalized common spatial factor model. Biostatistics 4 569-582. · Zbl 1197.62067 · doi:10.1093/biostatistics/4.4.569 [31] Williamson, J. M., Datta, S. and Satten, G. A. (2003). Marginal analysis of clustered data when the cluster size is informative. Biometrics 59 36-42. · Zbl 1210.62082 · doi:10.1111/1541-0420.00005 [32] Williamson, J. M., Kim, H. Y., Manatunga, A. and Addiss, D. G. (2008). Modeling survival data with informative cluster size. Stat. Med. 27 543-555. · doi:10.1002/sim.3003 [33] Wu, M. C., Carroll, R. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics 44 175-188. · Zbl 0707.62210 · doi:10.2307/2531905 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.