[1] |
A. R. Messina, Inter-area Oscillations In Power Systems: A Nonlinear and Nonstationary Perspective, Springer, Berlin, Germany, 2009. |

[2] |
J. F. Hauer, W. A. Mittelstadt, R. Adapa, M. K. Donelly, and W. H. Litzenberger, “Power system dynamics and stability-section 8: direct analysis of wide-area dynamics,” in CRC Electric Power Engineering Handbook, chapter 11, CRC Press, Cleveland, Ohio, USA, 2000. |

[3] |
J. F. Hauer and J. G. DeSteese, “A tutorial on detection and characterization of special behavior in large electric power systems,” Tech. Rep. PNL-14655, Pacific Northwest National Laboratory, Cambridge, Mass, USA, July 2004. |

[4] |
J.-P. Chilès and P. Delfiner, Geostatistics: Modeling Spatial Uncertainty, Wiley Series in Probability and Statistics: Applied Probability and Statistics, John Wiley & Sons, New York, NY, USA, 1999. · Zbl 0922.62098 |

[5] |
P. Holmes, J. L. Lumley, and G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge Monographs on Mechanics, Cambridge University Press, Cambridge, Mass, USA, 1996. · Zbl 0890.76001 |

[6] |
T. P. Barnett, “Interaction of the monsoon and Pacific trade wind system at interannual time scales. Part I: the equatorial zone,” Monthly Weather Review, vol. 111, no. 4, pp. 756-773, 1983. |

[7] |
R. D. Susanto, Q. Zheng, and X. H. Yan, “Complex singular value decomposition analysis of equatorial waves in the pacific observed by TOPEX/Poseidon altimeter,” American Meteorological Society, vol. 15, pp. 764-774, 1997. |

[8] |
N. Aubry, R. Guyonnet, and R. Lima, “Spatiotemporal analysis of complex signals: theory and applications,” Journal of Statistical Physics, vol. 64, no. 3-4, pp. 683-739, 1991. · Zbl 0943.37510
· doi:10.1007/BF01048312 |

[9] |
C. Wolter, M. A. Trindade, and R. Sampaio, “Obtaining mode shape through the Karhunen-Loeve expansion for distributed-parameter linear systems,” Vibrations and Acoustic, vol. 10, pp. 444-452, 2001. |

[10] |
H. Dankowicz, P. Holmes, G. Berkooz, and J. Elezgaray, “Local models of spatio-temporally complex fields,” Physica D, vol. 90, no. 4, pp. 387-407, 1996. · Zbl 0885.35115
· doi:10.1016/0167-2789(95)00245-6 |

[11] |
P. Esquivel and A. R. Messina, “Complex empirical orthogonal function analysis of wide-area system dynamics,” in Proceedings of IEEE Power and Energy Society General Meeting (PES ’08), July 2008.
· doi:10.1109/PES.2008.4596270 |

[12] |
G. Kerschen, J.-C. Golinval, A. F. Vakakis, and L. A. Bergman, “The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview,” Nonlinear Dynamics, vol. 41, no. 1-3, pp. 147-169, 2005. · Zbl 1103.70011
· doi:10.1007/s11071-005-2803-2 |

[13] |
A. Hannachi, I. T. Jolliffe, and D. B. Stephenson, “Empirical orthogonal functions and related techniques in atmospheric science: a review,” International Journal of Climatology, vol. 27, no. 9, pp. 1119-1152, 2007.
· doi:10.1002/joc.1499 |

[14] |
J. Terradas, R. Oliver, and J. L. Ballester, “Application of statistical techniques to the analysis of solar coronal oscillations,” Astrophysical Journal, vol. 614, no. 1, pp. 435-447, 2004.
· doi:10.1086/423332 |

[15] |
D. Mwale, T. Y. Gan, K. Devito, C. Mendoza, and U. Silins, “Precipitation variability and its relationship to hydrologic variability in Alberta,” Hydrological Processes, vol. 23, pp. 3040-3056, 2009. |

[16] |
S. Uhlig, “On the complexity of Internet traffic dynamics on its topology,” Telecommunication Systems, vol. 43, no. 3-4, pp. 167-180, 2010. |

[17] |
M. Li and S. C. Lim, “Modeling network traffic using generalized Cauchy process,” Physica A, vol. 387, no. 11, pp. 2584-2594, 2008.
· doi:10.1016/j.physa.2008.01.026 |

[18] |
M. Li, “Generation of teletraffic of generalized Cauchy type,” Physica Scripta, vol. 81, no. 2, pp. 1-10, 2010. · Zbl 1191.90013 |

[19] |
J. G. Proakis and D. G. Manolakis, Digital Treatment of Signals, Pearson Education, Delhi, India, 2007. |

[20] |
M. Li, W.-S. Chen, and L. Han, “Correlation matching method of the weak stationarity test of LRD traffic,” Telecommunication Systems, vol. 43, no. 3-4, pp. 181-195, 2010. |

[21] |
A. R. Messina and V. Vittal, “Extraction of dynamic patterns from wide-area measurements using empirical orthogonal functions,” IEEE Transactions on Power Systems, vol. 22, no. 2, pp. 682-692, 2007.
· doi:10.1109/TPWRS.2007.895157 |

[22] |
A. R. Messina, V. Vittal, D. Ruiz-Vega, and G. Enríquez-Harper, “Interpretation and visualization of wide-area PMU measurements using Hilbert analysis,” IEEE Transactions on Power Systems, vol. 21, no. 4, pp. 1763-1771, 2006.
· doi:10.1109/TPWRS.2006.881153 |

[23] |
B. F. Feeny, “A complex orthogonal decomposition for wave motion analysis,” Journal of Sound and Vibration, vol. 310, no. 1-2, pp. 77-90, 2008.
· doi:10.1016/j.jsv.2007.07.047 |

[24] |
C. Torrence and G. P. Compo, “A practical guide to wavelet analysis,” Bulletin of the American Meteorological Society, vol. 79, no. 1, pp. 61-78, 1998. |