## The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics.(English)Zbl 1189.65254

Summary: Variational iteration method has been used to handle linear and nonlinear differential equations. The main property of the method lies in its flexibility and ability to solve nonlinear equations accurately and conveniently. In this work, a general framework of the variational iteration method is presented for analytical treatment of fractional partial differential equations in fluid mechanics. The fractional derivatives are described in the Caputo sense. Numerical illustrations that include the fractional wave equation, fractional Burgers equation, fractional KdV equation, fractional Klein-Gordon equation and fractional Boussinesq-like equation are investigated to show the pertinent features of the technique. Comparison of the results obtained by the variational iteration method with those obtained by Adomian decomposition method reveals that the first method is very effective and convenient. The basic idea described in this paper is expected to be further employed to solve other similar linear and nonlinear problems in fractional calculus.

### MSC:

 65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems 26A33 Fractional derivatives and integrals 76A02 Foundations of fluid mechanics
Full Text:

### References:

  He, J. H., Some applications of nonlinear fractional differential equations and their approximations, Bull. Sci. Technol., 15, 2, 86-90 (1999)  He, J. H., Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Methods Appl. Mech. Engrg., 167, 57-68 (1998) · Zbl 0942.76077  Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press New York · Zbl 0918.34010  Al-Khaled, K.; Momani, S., An approximate solution for a fractional diffusion-wave equation using the decomposition method, Appl. Math. Comput., 165, 473-483 (2005) · Zbl 1071.65135  Mainardi, F.; Luchko, Y.; Pagnini, G., The fundamental solution of the space-time fractional diffusion equation, Frac. Calc. Appl. Anal., 4, 153-192 (2001) · Zbl 1054.35156  Hanyga, A., Multidimensional solutions of time-fractional diffusion-wave equations, Proc. R. Soc. Lond. A, 458, 933-957 (2002) · Zbl 1153.35347  Huang, F.; Liu, F., The time fractional diffusion and fractional advection-dispersion equation, ANZIAM, 46, 1-14 (2005) · Zbl 1072.35218  Huang, F.; Liu, F., The fundamental solution of the space-time fractional advection-dispersion equation, J. Appl. Math. Comput., 18, 21-36 (2005) · Zbl 1086.35003  Momani, S., Analytic and approximate solutions of the space- and time-fractional telegraph equations, Appl. Math. Comput., 170, 2, 1126-1134 (2005) · Zbl 1103.65335  Momani, S., An explicit and numerical solutions of the fractional KdV equation, Math. Comput. Simul., 70, 110-118 (2005) · Zbl 1119.65394  Debnath, L.; Bhatta, D., Solutions to few linear fractional inhomogeneous partial differential equations in fluid mechanics, Frac. Calc. Appl. Anal., 7, 21-36 (2004) · Zbl 1076.35096  Adomian, G., A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135, 501-544 (1988) · Zbl 0671.34053  Adomian, G., Solving Frontier Problems of Physics: The Decomposition method (1994), Kluwer Academic Publishers: Kluwer Academic Publishers Boston · Zbl 0802.65122  Wazwaz, A. M., A new algorithm for calculating Adomian polynomials for nonlinear operators, Appl. Math. Comput., 111, 53-69 (2000) · Zbl 1023.65108  Wazwaz, A. M.; El-Sayed, S., A new modification of the Adomian decomposition method for linear and nonlinear operators, Appl. Math. Comput., 122, 393-405 (2001) · Zbl 1027.35008  Öziş, T.; Yildirim, A., Comparison between Adomians method and He’s homotopy perturbation method, Comput. Math. Appl., 56, 5, 1216-1224 (2008) · Zbl 1155.65344  Momani, S.; Abuasad, S., Application of He’s variational iteration method to Helmholtz equation, Chaos Solitons Fractals, 27, 5, 1119-1123 (2006) · Zbl 1086.65113  He, J. H., Variational iteration method for delay differential equations, Commun. Nonlinear Sci. Numer. Simul., 2, 4, 235-236 (1997)  He, J. H., Semi-inverse method of establishing generalized principles for fluid mechanics with emphasis on turbomachinery aerodynamics, Int. J. Turbo Jet-Engines, 14, 1, 23-28 (1997)  He, J. H., Approximate solution of non linear differential equations with convolution product nonlinearities, Comput. Methods Appl. Mech. Engrg., 167, 69-73 (1998) · Zbl 0932.65143  He, J. H., Variational iteration method- a kind of non-linear analytical technique: Some examples, Int. J. Nonlinear Mech., 34, 699-708 (1999) · Zbl 1342.34005  He, J. H., Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput., 114, 115-123 (2000) · Zbl 1027.34009  He, J. H., Variational theory for linear magneto-electro-elasticity, Int. J. Nonlinear Sci. Numer. Simul., 2, 4, 309-316 (2001) · Zbl 1083.74526  He, J. H., Variational principle for Nano thin film lubrication, Int. J. Nonlinear Sci. Numer. Simul., 4, 3, 313-314 (2003)  He, J. H., Variational principle for some nonlinear partial differential equations with variable coefficients, Chaos, Solitons and Fractals, 19, 4, 847-851 (2004) · Zbl 1135.35303  He, J. H., Variational iteration method—Some recent results and new interpretations, J. Comput. Appl. Math., 207, 1, 3-17 (2007) · Zbl 1119.65049  He, J. H.; Wu, X. H., Variational iteration method: New development and applications, Comput. Math. Appl., 54, 7-8, 881-894 (2007) · Zbl 1141.65372  Inokuti, M.; Sekine, H.; Mura, T., General use of the Lagrange multiplier in non-linear mathematical physics, (Nemat-Nasser, S., Variational Method in the Mechanics of Solids (1978), Pergamon Press: Pergamon Press Oxford), 156-162  Wazwaz, A. M., The variational iteration method for solving linear and nonlinear systems of PDEs, Comput. Math. Appl., 54, 7-8, 895-902 (2007) · Zbl 1145.35312  Wazwaz, A. M., The variational iteration method: A reliable analytic tool for solving linear and nonlinear wave equations, Comput. Math. Appl., 54, 7-8, 926-932 (2007) · Zbl 1141.65388  Wazwaz, A. M., The variational iteration method: A powerful scheme for handling linear and nonlinear diffusion equations, Comput. Math. Appl., 54, 7-8, 933-939 (2007) · Zbl 1141.65077  Odibat, Z., Reliable approaches of variational iteration method for nonlinear operators, Math. Comput. Model., 48, 1-2, 222-231 (2008) · Zbl 1145.65314  Yusufoglu, E., Variational iteration method for construction of some compact and noncompact structures of Klein-Gordon equations, Int. J. Nonlinear Sci. Numer. Simul., 8, 2, 153-185 (2007)  Biazar, J.; Ghazvini, H., He’s variational iteration method for solving hyperbolic differential equations, Int. J. Nonlinear Sci. Numer. Simul., 8, 3, 311-314 (2007) · Zbl 1193.65144  Ozer, H., Application of the variational iteration method to the boundary value problems with jump discontinuities arising in solid mechanics, Int. J. Nonlinear Sci. Numer. Simul., 8, 4, 513-518 (2007)  Mokhtari, R., Variational iteration method for solving nonlinear differential-difference equations, Int. J. Nonlinear Sci. Numer. Simul., 9, 1, 19-24 (2008) · Zbl 1401.65152  Yildirim, A.; Öziş, T., Solutions of singular IVPs of LaneEmden type by the variational iteration method, Nonlinear Anal. TMA, 70, 6, 2480-2484 (2009) · Zbl 1162.34005  Momani, S., Zaid Odibat Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method, Appl. Math. Comput., 177, 2, 484-492 (2006)  Odibat, Z.; Momani, S., Approximate solutions for boundary value problems of time-fractional wave equation, Appl. Math. Comput., 181, 1, 767-774 (2006) · Zbl 1148.65100  Momani, S., Numerical approach to differential equations of fractional order, J. Comput. Appl. Math., 207, 1, 96-110 (2007) · Zbl 1119.65127  Momani, S.; Odibat, Z., Numerical comparison of methods for solving linear differential equations of fractional order, Chaos Solitons Fractals, 31, 5, 1248-1255 (2007) · Zbl 1137.65450  Odibat, Z.; Momani, S., Numerical methods for nonlinear partial differential equations of fractional order, Appl. Math. Model., 32, 1, 28-39 (2008) · Zbl 1133.65116  Momani, S.; Odibat, Z., Analytical approach to linear fractional partial differential equations arising in fluid mechanics, Phys. Lett. A, 355, 271-279 (2006) · Zbl 1378.76084  Odibat, Z.; Momani, S., Application of variational iteration method to nonlinear differential equations of fractional order, Int. J. Nonlinear Sci. Numer. Simul., 7, 1, 15-27 (2006) · Zbl 1401.65087  Momani, S.; Odibat, Z., Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations, Comput. Math. Appl., 54, 7-8, 910-919 (2007) · Zbl 1141.65398  Momani, S.; Odibat, Z.; Alawneh, A., Variational iteration method for solving the space- and time-fractional KdV equation, Numer. Methods Partial Differential Equations, 24, 1, 262-271 (2008) · Zbl 1130.65132  Caputo, M., Linear models of dissipation whose $$Q$$ is almost frequency independent. Part II, J. Roy. Astr. Soc., 13, 529-539 (1967)  Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993), John Wiley and Sons Inc.: John Wiley and Sons Inc. New York · Zbl 0789.26002  Oldham, K. B.; Spanier, J., The Fractional Calculus (1974), Academic Press: Academic Press New York · Zbl 0428.26004  Podlubny, I., Geometric and physical interpretation of fractional integration and fractional differentiation, Frac. Calc. Appl. Anal., 5, 367-386 (2002) · Zbl 1042.26003  Cherruault, Y., Convergence of Adomian’s method, Kybernetes, 18, 31-38 (1989) · Zbl 0697.65051  Cherruault, Y.; Adomian, G., Decomposition methods: A new proof of convergence, Math. Comput. Model., 18, 103-106 (1993) · Zbl 0805.65057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.