×

Application of He’s variational iteration method and Adomian’s decomposition method to the fractional KdV-Burgers-Kuramoto equation. (English) Zbl 1189.65255

Summary: The fractional KdV-Burgers-Kuramoto equation is studied. He’s variational iteration method (VIM) and Adomian’s decomposition method (ADM) are applied to obtain its solution. Comparison with HAM is made to highlight the significant features of the employed methods and their capability of handling completely integrable equations.

MSC:

65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] West, B. J.; Bolognab, M.; Grigolini, P., Physics of Fractal Operators (2003), Springer: Springer New York
[2] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993), Wiley: Wiley New York · Zbl 0789.26002
[3] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications (1993), Gordon and Breach: Gordon and Breach Yverdon · Zbl 0818.26003
[4] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010
[5] He, J. H., Int. J. Mod. Phys. B, 20, 10, 1141 (2006) · Zbl 1102.34039
[6] He, J. H., Non-Perturbative Methods for Strongly Nonlinear Problems (2006), Dissertation.de-Verlag im Internet: Dissertation.de-Verlag im Internet Berlin
[7] He, J. H., Comput. Methods Appl. Mech. Engrg., 167, 57 (1998) · Zbl 0942.76077
[8] He, J. H., Appl. Math. Comput., 114, 2/3, 115 (2000)
[9] He, J. H.; Wu, X. H., Chaos Solitons Fractals, 29, 1, 108 (2006) · Zbl 1147.35338
[10] He, J. H., Commun. Nonlinear Sci. Numer. Simul., 2, 4, 203 (1997)
[11] He, J. H., Int. J. Nonlinear Mech., 34, 799 (1999)
[12] He, J. H., Mech. Res. Commun., 3291, 93 (2005)
[13] He, J. H., Chaos Solitons Fractals, 26, 3, 695 (2005) · Zbl 1072.35502
[14] Ganji, D. D.; Jannatabadi, M.; Mohseni, E., J. Comput. Appl. Math., 207, 1, 35 (2007) · Zbl 1120.65107
[15] Ganji, D. D.; Sadighi, A., J. Comput. Appl. Math. (2006)
[16] Ganji, D. D.; Jannatabadi, M.; Mohseni, E., J. Comput. Appl. Math. (2006)
[17] Tari, Hafez; Ganji, D. D.; Babazadeh, H., Phys. Lett. A, 363, 3, 213-217 (2007) · Zbl 1197.80059
[18] Lesnic, D., Chaos Solitons Fractals, 28, 776 (2006) · Zbl 1109.35024
[19] Adomian, G., Convergent series solution of nonlinear equation, J. Comput. Appl. Mat., 11, 113-117 (1984) · Zbl 0549.65034
[20] Adomian, G., Solutions of nonlinear PDE, Appl. Math. Lett., 11, 121-123 (1989) · Zbl 0933.65121
[21] G. Adomian, Solving Frontier Problems of Physics, The Decomposition Method, Boston, 1994; G. Adomian, Solving Frontier Problems of Physics, The Decomposition Method, Boston, 1994 · Zbl 0802.65122
[22] Adomian, G.; Rach, R., Noise terms in decomposition solution series, Comput. Math. Appl., 11, 61-64 (1992) · Zbl 0777.35018
[23] G. Adomian, R. Rach, Equality of partial solutions in the decomposition method for linear and nonlinear partial differential; G. Adomian, R. Rach, Equality of partial solutions in the decomposition method for linear and nonlinear partial differential · Zbl 0702.35058
[24] Wazwaz, A. M., The decomposition method applied to systems of partial differential equations and to the reaction-diffusion Brusselator model, Appl. Math. Comput., 110, 251-264 (2000) · Zbl 1023.65109
[25] Wazwaz, A. M., A comparison between Adomian decomposition method and Taylor series method in the series solutions, Appl. Math. Comput., 97, 37-44 (1998) · Zbl 0943.65084
[26] Wazwaz, A. M., Exact solution to nonlinear diffusion equations obtained by the decomposition method, Appl. Math. Comput., 123, 109-122 (2001) · Zbl 1027.35019
[27] Song, Lina; Zhang, Hongqing, Application of homotopy analysis method to fractional KdV-Burgers-Kuramoto equation, Phys. Lett. A, 367, 88-94 (2007) · Zbl 1209.65115
[28] Caputo, M., J. Roy. Astr. Soc., 13, 529 (1967)
[29] Momani, S.; Odibat, Z., Phys. Lett. A, 1, 53, 1 (2006)
[30] Momani, S.; Abusaad, S., Chaos Solitons Fractals, 27, 5, 1119 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.