Li, Xiaolin; Zhu, Jialin A Galerkin boundary node method and its convergence analysis. (English) Zbl 1189.65291 J. Comput. Appl. Math. 230, No. 1, 314-328 (2009). The paper is concerned with a new Galerkin boundary node method for solving boundary value problems in \({\mathbb R}^2\). The method is based on a variational form of the boundary integral formulation of the problem. Trial and test functions are generated by the moving least-square approximation leading to a meshless boundary type method. Unlike the original boundary node method, the proposed one generates symmetric matrices for symmetric problems and implements the boundary conditions accurately since they are enforced by the variational formulation. Error estimates are provided for the Dirichlet problem of the Laplace equation. Some numerical tests are given to illustrate the theoretical error estimates. Reviewer: Ana M. Alonso Rodriguez (Povo) Cited in 80 Documents MSC: 65N38 Boundary element methods for boundary value problems involving PDEs 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs 65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs 65N15 Error bounds for boundary value problems involving PDEs 35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation Keywords:Galerkin boundary node method; moving least-squares; meshless methods; convergence; boundary element method; numerical examples; error estimates PDF BibTeX XML Cite \textit{X. Li} and \textit{J. Zhu}, J. Comput. Appl. Math. 230, No. 1, 314--328 (2009; Zbl 1189.65291) Full Text: DOI References: [1] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: An overview and recent developments, Comput. Methods Appl. Mech. Eng., 139, 3-47 (1996) · Zbl 0891.73075 [2] Liu, G. R., Meshfree Methods—Moving Beyond the Finite Element Method (2002), CRC Press: CRC Press Boca Raton [3] Krysl, P.; Belytschko, T., Element-free Galerkin method: Convergence of the continuous and discontinuous shape functions, Comput. Methods Appl. Mech. Eng., 148, 257-277 (1997) · Zbl 0918.73125 [4] Han, W.; Meng, X., Error analysis of the reproducing kernel particle method, Comput. Methods Appl. Mech. Eng., 190, 6157-6181 (2001) · Zbl 0992.65119 [5] Li, S.; Liu, W. K., Moving least-square reproducing kernel methods Part II: Fourier analysis, Comput. Methods Appl. Mech. Eng., 139, 159-193 (1996) · Zbl 0883.65089 [6] Liu, W. K.; Li, S.; Belytschko, T., Moving least-square reproducing kernel methods (I) Methodology and convergence, Comput. Methods Appl. Mech. Eng., 143, 113-154 (1997) · Zbl 0883.65088 [7] Cheng, R.; Cheng, Y., Error estimates for the finite point method, Appl. Numer. Math., 58, 884-898 (2008) · Zbl 1145.65086 [8] Duarte, C. A.; Oden, J. T., H-p clouds—An h-p meshless method, Numer. Methods Partial Differential Equations, 12, 675-705 (1996) · Zbl 0869.65069 [9] Lancaster, P.; Salkauskas, K., Surface generated by moving least squares methods, Math. Comp., 37, 141-158 (1981) · Zbl 0469.41005 [10] Shepard, D., A two-dimensional interpolation function for irregularly spaced points, (Proc. 23rd Nat. Conf. ACM (1968), ACM Press: ACM Press New York), 517-524 [11] Mukherjee, Y. X.; Mukherjee, S., The boundary node method for potential problems, Internat. J. Numer. Methods Eng., 40, 797-815 (1997) · Zbl 0885.65124 [12] Xie, H.; Nogami, T.; Wang, J., A radial boundary node method for two-dimensional elastic analysis, Eng. Anal. Bound. Elem., 27, 853-863 (2003) · Zbl 1060.74657 [13] Golberg, M. A.; Chen, C. S.; Bowman, H., Some recent results and proposals for the use of radial basis functions in the BEM, Eng. Anal. Bound. Elem., 23, 285-296 (1999) · Zbl 0948.65132 [14] Brenner, S. C.; Scott, L. R., The Mathematical Theory of Finite Element Methods (1994), Springer-Verlag: Springer-Verlag New York · Zbl 0804.65101 [15] Lious, J. L.; Magenes, E., Non-Homogeneous Boundary Value Problems and Applications (1972), Springer-Verlag: Springer-Verlag Berlin [16] Kufner, A., Weighted Sobolev Spaces (1985), Wiley: Wiley New York · Zbl 0567.46009 [17] Zuppa, C., Good quality point sets and error estimates for moving least square approximations, Appl. Numer. Math., 47, 575-585 (2003) · Zbl 1040.65034 [18] Armentano, M. G.; Duran, R. G., Error estimates for moving least-square approximations, Appl. Numer. Math., 37, 397-416 (2001) · Zbl 0984.65096 [19] Zuppa, C., Error estimates for moving least-square approximations, Bull Braz. Math. Soc. (N.S.), 34, 231-249 (2003) · Zbl 1056.41007 [20] Zuppa, C., Jackson-type inequalities for h-p clouds and error estimates, Comput. Methods Appl. Mech. Eng., 194, 1875-1887 (2005) · Zbl 1097.65110 [21] Hsiao, G. C., Boundary element methods—An overview, Appl. Numer. Math., 56, 1356-1369 (2006) · Zbl 1237.65133 [22] Wendland, W. L., Boundary element methods for elliptic problems, (Schatz, A. H.; Thomée, V.; Wendland, W. L., Mathematical Theory of Finite and Boundary Element Methods (1990), Birkhäuser Verlag: Birkhäuser Verlag Boston), 223-269 · Zbl 0712.65099 [23] Zhu, J., Boundary Element Analysis for Elliptic Boundary Value Problems (1991), Science Press: Science Press Beijing [24] Kane, J. H., Boundary Element Analysis in Engineering Continuum Mechanics (1994), Prentice Hall: Prentice Hall New Jersey [25] Nicolazzi, L. C.; Barcellos, C. S.; Fancello, E. A.; Duarte, C. A.M., Generalized boundary element method for galerkin boundary integrals, Eng. Anal. Bound. Elem., 29, 494-510 (2005) · Zbl 1182.65182 [26] Zhu, J.; Zhang, S., Galerkin boundary element method for solving the boundary integral equation with hypersingularity, J. Univ. Sci. Technol. China, 37, 1357-1362 (2007) · Zbl 1174.65538 [27] Nedelec, J. C., Curved finite element methods for the solution of integral singular equation on surfaces in \(R^3\), Comput. Methods Appl. Mech. Eng., 8, 61-86 (1976) · Zbl 0333.45015 [28] Nedelec, J. C.; Artola, M.; Cessenat, M., Integral equations and numerical methods, (Dautray, R.; Lious, J. L., Mathematical Analysis and Numerical Methods for Science and Technology, vol. 4 (2000), Springer: Springer Berlin), 33-152 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.